MySQL Reference Manual

Copyright © 1997-2004 MySQL AB

Table of Contents

1 General Information 1
1.1 About This Manual 2
1.1.1 Conventions Used in This Manual................ 2
1.2 Overview of the MySQL Database Management System 4
1.2.1 History of MySQL 5
1.2.2 The Main Features of MySQL 6
1.2.3 MySQL Stabilitycooiiiii. . 8
1.2.4 How Big MySQL Tables Can Be................. 9
1.2.5 Year 2000 Compliance 10
1.3 Overview of MySQL AB 12
1.3.1 The Business Model and Services of MySQL AB.. 13
1.3.1.1 Support............ ... 13
1.3.1.2 Training and Certification 13
1.3.1.3 Consulting 14
1.3.1.4 Commercial Licenses 14
1.3.1.5 Partnering............................ 14
1.3.2 Contact Information 15
1.4 MySQL Support and Licensing 16
1.4.1 Support Offered by MySQL AB................. 16
1.4.2 Copyrights and Licenses Used by MySQL........ 17
1.4.3 MySQL Licenses.ccoiiiiiiiinn... 17
1.4.3.1 Using the MySQL Software Under a
Commercial License....................... 18
1.4.3.2 Using the MySQL Software for Free Under
GPL . 18
1.4.4 MySQL AB Logos and Trademarks 19
1.4.4.1 The Original MySQL Logo............. 20
1.4.4.2 MySQL Logos That May Be Used Without
Written Permission 20
1.4.4.3 When You Need Written Permission to Use
MySQL Logosoovvvenei 20
1.4.4.4 MySQL AB Partnership Logos......... 21
1.4.4.5 Using the Word MySQL in Printed Text or
Presentations............ 21
1.4.4.6 Using the Word MySQL in Company and
Product Names........................... 21
1.5 MySQL Development Roadmap 21
1.5.1 MySQL 4.0 in a Nutshell 22
1.5.1.1 Features Available in MySQL 4.0....... 22
1.5.1.2 The Embedded MySQL Server......... 23
1.5.2 MySQL 4.1 in a Nutshell 24
1.5.2.1 Features Available in MySQL 4.1....... 24

1.5.2.2 Stepwise Rollout 25

1.5.2.3 Ready for Immediate Development Use

... 25
1.5.3 MySQL 5.0: The Next Development Release. 26
1.6 MySQL and the Future (the TODO) 26
1.6.1 New Features Planned for 4.1................... 26
1.6.2 New Features Planned for 5.0................... 26
1.6.3 New Features Planned for 5.1................... 27
1.6.4 New Features Planned for the Near Future 28
1.6.5 New Features Planned for the Mid-Term Future.. 30
1.6.6 New Features We Don’t Plan to Implement. 31
1.7 MySQL Information Sources 32
1.7.1 MySQL Mailing Lists 32
1.7.1.1 The MySQL Mailing Lists 32
1.7.1.2 Asking Questions or Reporting Bugs.... 34
1.7.1.3 How to Report Bugs or Problems 35
1.7.1.4 Guidelines for Answering Questions on the
Mailing List ... 39
1.7.2 MySQL Community Support on IRC (Internet Relay
Chat) ... 40
1.8 MySQL Standards Compliance 40
1.8.1 What Standards MySQL Follows 41
1.8.2 Selecting SQL Modes 41
1.8.3 Running MySQL in ANSI Mode 41
1.8.4 MySQL Extensions to Standard SQL............ 42
1.8.5 MySQL Differences from Standard SQL 45
1.8.5.1 Subqueries 45
1.8.5.2 SELECT INTOTABLE 45
1.8.5.3 Transactions and Atomic Operations ... 45
1.8.5.4 Stored Procedures and Triggers 48
1.8.5.5 Foreign Keys 48
1.85.6 Views.........oiiiiiiininin... 50
1.8.5.7 ‘==’ as the Start of a Comment......... 50
1.8.6 How MySQL Deals with Constraints 51
1.8.6.1 Constraint PRIMARY KEY / UNIQUE...... o1
1.8.6.2 Constraint NOT NULL and DEFAULT Values
... 52
1.8.6.3 Constraint ENUM and SET 52
1.8.7 Known Errors and Design Deficiencies in MySQL
.. 53
1.8.7.1 Errors in 3.23 Fixed in a Later MySQL
Version.ooouiviin i 53
1.8.7.2 Errors in 4.0 Fixed in a Later MySQL
Version.oooiiinnii . 53

1.8.7.3 Open Bugs and Design Deficiencies in
MySQL ..o 53

ii

2 Installing MySQL......................... 59

2.1 General Installation Issues.............................. 59
2.1.1 Operating Systems Supported by MySQL 60
2.1.2 Choosing Which MySQL Distribution to Install.. 61

2.1.2.1 Choosing Which Version of MySQL to

2.1.2.2 Choosing a Distribution Format........ 64
2.1.2.3 How and When Updates Are Released .. 65
2.1.2.4 Release Philosophy—No Known Bugs in

Releases............o ... 65
2.1.2.5 MySQL Binaries Compiled by MySQL AB
... 67
2.1.3 How to Get MySQL 73
2.1.4 Verifying Package Integrity Using MD5 Checksums
Or GRUPGo 73
2.1.4.1 Verifying the MD5 Checksum 73
2.1.4.2 Signature Checking Using GnuPG 74
2.1.4.3 Signature Checking Using RPM.......... 75
2.1.5 Installation Layouts............................ 76
2.2 Standard MySQL Installation Using a Binary Distribution
... 7
2.2.1 Installing MySQL on Windows 78
2.2.1.1 Windows System Requirements 78
2.2.1.2 Installing a Windows Binary Distribution
... 79
2.2.1.3 Preparing the Windows MySQL
Environment 79
2.2.1.4 Selecting a Windows Server............ 81

2.2.1.5 Starting the Server for the First Time .. 81
2.2.1.6 Starting MySQL from the Windows
Command Line 83
2.2.1.7 Starting MySQL as a Windows Service.. 83
2.2.1.8 Troubleshooting a MySQL Installation

Under Windows 85

2.2.1.9 Running MySQL Client Programs on
Windows 86

2.2.1.10 MySQL on Windows Compared to

MySQLon Unix.......................... 87
2.2.2 Installing MySQL on Linux..................... 90
2.2.3 Installing MySQL on Mac OS X 92
2.2.4 Installing MySQL on NetWare.................. 95
2.2.5 Installing MySQL on Other Unix-Like Systems. .. 97
2.3 MySQL Installation Using a Source Distribution.......... 99
2.3.1 Source Installation Overview 100
2.3.2 Typical configure Options 103
2.3.3 Installing from the Development Source Tree ... 106
2.3.4 Dealing with Problems Compiling MySQL. 109

2.3.5 MIT-pthreads Notes 112

2.3.6 Installing MySQL from Source on Windows. 113
2.3.6.1 Building MySQL Using VC++......... 114
2.3.6.2 Creating a Windows Source Package from

the Latest Development Source 116

2.3.7 Compiling MySQL Clients on Windows 117

2.4 Post-Installation Setup and Testing..................... 117

2.4.1 Windows Post-Installation Procedures.......... 117

2.4.2 Unix Post-Installation Procedures.............. 118
2.4.2.1 Problems Running mysql_install_db

.. 123
2.4.2.2 Starting and Stopping MySQL
Automatically 124
2.4.2.3 Starting and Troubleshooting the MySQL
SEIVET. .\ttt 127
2.4.3 Securing the Initial MySQL Accounts.......... 129
2.5 Upgrading/Downgrading MySQL....................... 132

2.5.1 Upgrading from Version 4.1 to 5.0 133

2.5.2 Upgrading from Version 4.0 to 4.1 134

2.5.3 Upgrading from Version 3.23 to 4.0 138

2.5.4 Upgrading from Version 3.22 to 3.23 142

2.5.5 Upgrading from Version 3.21 to 3.22 144

2.5.6 Upgrading from Version 3.20 to 3.21 144

2.5.7 Upgrading MySQL Under Windows............ 145

2.5.8 Upgrading the Grant Tables................... 146

2.5.9 Copying MySQL Databases to Another Machine

... 147
2.6 Operating System-Specific Notes 148

2.6.1 Linux NoteS.........couuiiiiiiinnnneen. 148
2.6.1.1 Linux Operating System Notes........ 148
2.6.1.2 Linux Binary Distribution Notes 148
2.6.1.3 Linux Source Distribution Notes 149
2.6.1.4 Linux Post-Installation Notes......... 151
2.6.1.5 Linux x86 Notes 153
2.6.1.6 Linux SPARC Notes 154
2.6.1.7 Linux Alpha Notes................... 154
2.6.1.8 Linux PowerPC Notes................ 155
2.6.1.9 Linux MIPS Notes 155
2.6.1.10 Linux TA-64 Notes 155

2.6.2 MacOS X Notes........oviieeiineeina... 156
2.6.2.1 Mac OS X 10.x (Darwin) 156
2.6.2.2 Mac OS X Server 1.2 (Rhapsody) 156

2.6.3 Solaris Notes.............ooiiiiiiii.. 156
2.6.3.1 Solaris 2.7/2.8 Notes 159
2.6.3.2 Solaris x86 Notes 160

2.6.4 BSD Notes.........cooiiiiiiiiiiiii 160
2.6.4.1 FreeBSD Notes 160
2.6.4.2 NetBSD Notes....................... 161

2.6.4.3 OpenBSD 2.5 Notes.................. 162

v

2.6.4.4 OpenBSD 2.8 Notes.................. 162

2.6.4.5 BSD/OS Version 2.x Notes 162
2.6.4.6 BSD/OS Version 3.x Notes 162
2.6.4.7 BSD/OS Version 4.x Notes 163
2.6.5 Other Unix Notes 163
2.6.5.1 HP-UX Version 10.20 Notes........... 163
2.6.5.2 HP-UX Version 11.x Notes............ 164
2.6.5.3 IBM-AIX notes...................... 165
2.6.5.4 SunOS4 Notes...................... 167
2.6.5.5 Alpha-DEC-UNIX Notes (Tru64)...... 167
2.6.5.6 Alpha-DEC-OSF/1 Notes............. 168
2.6.5.7 SGIIrix Notes....................... 170
2.6.5.8 SCONotes........ooviiiiiiiini.. 171
2.6.5.9 SCO UnixWare Version 7.1.x Notes.... 175
2.6.6 OS/2Notes.........coooiiiiiiiiiiii ... 176
2.6.7 BeOSNotes.......coviiiiinii . 177
2.7 Perl Installation Notes............ 177
2.7.1 Installing Perl on Unix........................ 178
2.7.2 Installing ActiveState Perl on Windows 179
2.7.3 Problems Using the Perl DBI/DBD Interface 179
3 MySQL Tutorial......................... 182
3.1 Connecting to and Disconnecting from the Server........ 182
3.2 Entering Queries........... ..ot 183
3.3 Creating and Using a Database......................... 186
3.3.1 Creating and Selecting a Database............. 187
3.3.2 CreatingaTable 188
3.3.3 Loading Data intoa Table 189
3.3.4 Retrieving Information from a Table........... 190
3.3.4.1 Selecting All Data, 191
3.3.4.2 Selecting Particular Rows............. 191
3.3.4.3 Selecting Particular Columns 193
3.3.4.4 Sorting Rows 194
3.3.4.5 Date Calculations.................... 195
3.3.4.6 Working with NULL Values............ 198
3.3.4.7 Pattern Matching 199
3.3.4.8 Counting Rows 202
3.3.4.9 Using More Than one Table 204
3.4 Getting Information About Databases and Tables 205
3.5 Using mysql in Batch Mode............................ 206
3.6 Examples of Common Queries.......................... 208
3.6.1 The Maximum Value for a Column 209
3.6.2 The Row Holding the Maximum of a Certain

Columno 209
3.6.3 Maximum of Column per Group 210

3.6.4 The Rows Holding the Group-wise Maximum of a
Certain Field 210

3.6.5 Using User Variables.......................... 211

3.6.6 Using Foreign Keys........................... 211
3.6.7 Searching on Two Keys 213
3.6.8 Calculating Visits Per Day 214
3.6.9 Using AUTO_INCREMENT...................on.. 214
3.7 Queries from the Twin Project 216
3.7.1 Find All Non-distributed Twins................ 216
3.7.2 Show a Table of Twin Pair Status 219
3.8 Using MySQL with Apache 219
4 Using MySQL Programs 220
4.1 Overview of MySQL Programs 220
4.2 Invoking MySQL Programs 220
4.3 Specifying Program Options 221
4.3.1 Using Options on the Command Line 222
4.3.2 Using Option Files............. 223
4.3.3 Using Environment Variables to Specify Options
... 227
4.3.4 Using Options to Set Program Variables. 227
5 Database Administration................. 229
5.1 The MySQL Server and Server Startup Scripts.......... 229
5.1.1 Overview of the Server-Side Scripts and Utilities
... 229
5.1.2 The mysqld-max Extended MySQL Server...... 230
5.1.3 The mysqld_safe Server Startup Script........ 232
5.1.4 The mysql.server Server Startup Script....... 235
5.1.5 The mysqld_multi Program for Managing Multiple
MySQL Servers.oouiiiiiiinnnnee.. 235
5.2 Configuring the MySQL Server......................... 239
5.2.1 mysqld Command-Line Options 239
5.2.2 The Server SQL Mode 249
5.2.3 Server System Variables....................... 251
5.2.3.1 Dynamic System Variables............ 274
5.2.4 Server Status Variables 277
5.3 The MySQL Server Shutdown Process.................. 284
5.4 General Security Issues i 285
5.4.1 General Security Guidelines 285
5.4.2 Making MySQL Secure Against Attackers...... 288
5.4.3 Startup Options for mysqld Concerning Security
... 290
5.4.4 Security Issues with LOAD DATA LOCAL 291
5.5 The MySQL Access Privilege System 292
5.5.1 What the Privilege System Does............... 292
5.5.2 How the Privilege System Works............... 292
5.5.3 Privileges Provided by MySQL 296
5.5.4 Connecting to the MySQL Server.............. 299

5.5.5 Access Control, Stage 1: Connection Verification

vi

5.5.6 Access Control, Stage 2: Request Verification ... 303
5.5.7 When Privilege Changes Take Effect 306
5.5.8 Causes of Access denied Errors............... 306
5.5.9 Password Hashing in MySQL 4.1 311
5.5.9.1 Implications of Password Hashing Changes
for Application Programs................. 315
5.5.9.2 Password Hashing in MySQL 4.1.0.... 316
5.6 MySQL User Account Management..................... 316
5.6.1 MySQL Usernames and Passwords............. 316
5.6.2 Adding New User Accounts to MySQL 318
5.6.3 Removing User Accounts from MySQL......... 321
5.6.4 Limiting Account Resources................... 321
5.6.5 Assigning Account Passwords.................. 323
5.6.6 Keeping Your Password Secure 324
5.6.7 Using Secure Connections 325
5.6.7.1 Basic SSL Concepts.................. 325
5.6.7.2 Requirements........................ 326
5.6.7.3 Setting Up SSL Certificates for MySQL
.. 326
5.6.7.4 SSL GRANT Options 331
5.6.7.5 SSL Command-Line Options.......... 332
5.6.7.6 Connecting to MySQL Remotely from
Windows with SSH 333
5.7 Disaster Prevention and Recovery 333
5.7.1 Database Backups............................ 334
5.7.2 Table Maintenance and Crash Recovery 335
5.7.2.1 myisamchk Invocation Syntax......... 336
5.7.2.2 General Options for myisamchk 337
5.7.2.3 Check Options for myisamchk......... 339
5.7.2.4 Repair Options for myisamchk 340
5.7.2.5 Other Options for myisamchk......... 341
5.7.2.6 myisamchk Memory Usage............ 342
5.7.2.7 Using myisamchk for Crash Recovery .. 343
5.7.2.8 How to Check MyISAM Tables for Errors
.. 344
5.7.2.9 How to Repair Tables 344
5.7.2.10 Table Optimization 347
5.7.3 Setting Up a Table Maintenance Schedule 347
5.7.4 Getting Information About a Table............ 348
5.8 MySQL Localization and International Usage 354
5.8.1 The Character Set Used for Data and Sorting... 354
5.8.1.1 Using the German Character Set...... 355
5.8.2 Setting the Error Message Language 355
5.8.3 Adding a New Character Set 356
5.8.4 The Character Definition Arrays............... 357
5.8.5 String Collating Support 358
5.8.6 Multi-Byte Character Support................. 358
5.8.7 Problems With Character Sets................. 359

vii

viii

5.8.8 MySQL Server Time Zone Support 359
5.9 The MySQL Log Files...... 360
59.1 The Error Log............oo i, 361
5.9.2 The General Query Log....................... 361
5.9.3 TheUpdateLog...............i .. 362
594 TheBinaryLog.......... 362
5.9.5 The Slow Query Log.......................... 366
5.9.6 Log File Maintenance......................... 366

5.10 Running Multiple MySQL Servers on the Same Machine
.. 367
5.10.1 Running Multiple Servers on Windows 369

5.10.1.1 Starting Multiple Windows Servers at the

Command Line 369

5.10.1.2 Starting Multiple Windows Servers as
SEIVICES « oottt et e 370
5.10.2 Running Multiple Servers on Unix 372

5.10.3 Using Client Programs in a Multiple-Server

Environment 373
5.11 The MySQL Query Cache 374
5.11.1 How the Query Cache Operates............... 374
5.11.2 Query Cache SELECT Options................. 376
5.11.3 Query Cache Configuration................... 376
5.11.4 Query Cache Status and Maintenance......... 377
6 Replication in MySQL 379
6.1 Introduction to Replication 379
6.2 Replication Implementation Overview................... 379
6.3 Replication Implementation Details..................... 380
6.3.1 Replication Master Thread States.............. 382
6.3.2 Replication Slave I/O Thread States........... 382
6.3.3 Replication Slave SQL Thread States 383
6.3.4 Replication Relay and Status Files............. 384
6.4 How to Set Up Replication............................. 386
6.5 Replication Compatibility Between MySQL Versions. 390
6.6 Upgrading a Replication Setup......................... 390
6.6.1 Upgrading Replication to 4.0 or 4.1............ 390
6.6.2 Upgrading Replication to 5.0.................. 391
6.7 Replication Features and Known Problems.............. 392
6.8 Replication Startup Options 395
6.9 Replication FAQ 404
6.10 Troubleshooting Replication 410

6.11 Reporting Replication Bugs........................... 411

7 MySQL Optimization.................... 413
7.1 Optimization Overview, 413
7.1.1 MySQL Design Limitations and Tradeoffs 413
7.1.2 Designing Applications for Portability.......... 414
7.1.3 What We Have Used MySQL For.............. 415
7.1.4 The MySQL Benchmark Suite................. 416
7.1.5 Using Your Own Benchmarks.................. 416
7.2 Optimizing SELECT Statements and Other Queries. 417
7.2.1 EXPLAIN Syntax (Get Information About a SELECT)
... 418
7.2.2 Estimating Query Performance 425
7.2.3 Speed of SELECT Queries 426
7.2.4 How MySQL Optimizes WHERE Clauses 426
7.2.5 How MySQL Optimizes OR Clauses 428
7.2.6 How MySQL Optimizes ISNULL............... 429
7.2.7 How MySQL Optimizes DISTINCT 430
7.2.8 How MySQL Optimizes LEFT JOIN and RIGHT JOIN
... 430
7.2.9 How MySQL Optimizes ORDERBY 431
7.2.10 How MySQL Optimizes LIMIT................ 433
7.2.11 How to Avoid Table Scans 433
7.2.12 Speed of INSERT Statements.................. 434
7.2.13 Speed of UPDATE Statements.................. 436
7.2.14 Speed of DELETE Statements.................. 436
7.2.15 Other Optimization Tips..................... 436
7.3 Locking Issuesoo i 439
7.3.1 Locking Methods 439
7.3.2 Table Locking Issues.......................... 441
7.4 Optimizing Database Structure......................... 443
7.4.1 Design Choicesoooiiii .. 443
7.4.2 Make Your Data as Small as Possible 443
7.4.3 Column Indexes.............................. 444
7.4.4 Multiple-Column Indexes...................... 445
7.4.5 How MySQL Uses Indexes 446
7.4.6 The MyISAM Key Cache 448
7.4.6.1 Shared Key Cache Access............. 450
7.4.6.2 Multiple Key Caches 450
7.4.6.3 Midpoint Insertion Strategy........... 451
7.4.6.4 Index Preloading..................... 452
7.4.6.5 Key Cache Block Size 453
7.4.6.6 Restructuring a Key Cache 453
7.4.7 How MySQL Counts Open Tables 454
7.4.8 How MySQL Opens and Closes Tables 454
7.4.9 Drawbacks to Creating Many Tables in the Same
Database............ 455
7.5 Optimizing the MySQL Server 455

7.5.1
7.5.2

System Factors and Startup Parameter Tuning.. 456
Tuning Server Parameters..................... 456

ix

7.5.3 Controlling Query Optimizer Performance. 459
7.5.4 How Compiling and Linking Affects the Speed of

MySQL . oo 459
7.5.5 How MySQL Uses Memory.................... 461
7.5.6 How MySQL Uses DNS....................... 462
7.6 Disk ISSUES . ..ottt 463
7.6.1 Using Symbolic Links......................... 464
7.6.1.1 Using Symbolic Links for Databases on
Unix...ooooi 464
7.6.1.2 Using Symbolic Links for Tables on Unix
.. 465
7.6.1.3 Using Symbolic Links for Databases on
Windows 466
8 MySQL Client and Utility Programs...... 468
8.1 Overview of the Client-Side Scripts and Utilities......... 468
8.2 myisampack, the MySQL Compressed Read-only Table
Generator 469
8.3 mysql, the Command-Line Tool 476
8.3.1 mysql Commandsou.... 480
8.3.2 Executing SQL Statements from a Text File.... 483
833 mysql Tips......... ... 484

8.3.3.1 Displaying Query Results Vertically ... 484
8.3.3.2 Using the --safe-updates Option 485

8.3.3.3 Disabling mysql Auto-Reconnect...... 485
8.4 mysqladmin, Administering a MySQL Server............ 486
8.5 The mysqlbinlog Binary Log Utility 489
8.6 mysqlcc, the MySQL Control Center 493
8.7 The mysqlcheck Table Maintenance and Repair Program
.. 494
8.8 The mysqldump Database Backup Program.............. 497
8.9 The mysqlhotcopy Database Backup Program 503
8.10 The mysqlimport Data Import Program............... 504
8.11 mysqlshow, Showing Databases, Tables, and Columns. .. 507
8.12 perror, Explaining Error Codes....................... 508
8.13 The replace String-Replacement Utility............... 509

9 MySQL Language Reference 510

10 Language Structure..................... 511
10.1 Literal Values.......... ... i 511
10.1.1 0 SErings . .ovvve et 511
10.1.2 Numbers............ooiiii ... 513
10.1.3 Hexadecimal Values.......................... 513
10.1.4 Boolean Values.............................. 514
10.1.5 NULL Values...........ooooiiiiiinnn... 514
10.2 Database, Table, Index, Column, and Alias Names. 514
10.2.1 Identifier Qualifiers.......................... 516
10.2.2 Identifier Case Sensitivity 516
10.3 User Variables, 518
10.4 System Variables.............. 519
10.4.1 Structured System Variables.................. 521
10.5 Comment Syntaxooviiiiiinnneeeeean. 522
10.6 Treatment of Reserved Words in MySQL............... 523
11 Character Set Support.................. 527
11.1 Character Sets and Collations in General 527
11.2 Character Sets and Collations in MySQL 528
11.3 Determining the Default Character Set and Collation ... 529
11.3.1 Server Character Set and Collation 529
11.3.2 Database Character Set and Collation......... 530
11.3.3 Table Character Set and Collation 530
11.3.4 Column Character Set and Collation.......... 531
11.3.5 Examples of Character Set and Collation
Assignment......... ... 531
11.3.6 Connection Character Sets and Collations. 533
11.3.7 Character String Literal Character Set and
Collationcover 534
11.3.8 Using COLLATE in SQL Statements............ 535
11.3.9 COLLATE Clause Precedence 536
11.3.10 BINARY Operatorcoviveeinn.... 536
11.3.11 Some Special Cases Where the Collation
Determination Is Tricky 536
11.3.12 Collations Must Be for the Right Character Set
... 937
11.3.13 An Example of the Effect of Collation........ 538
11.4 Operations Affected by Character Set Support 539
11.4.1 Result Strings................oiiiiiii... 539
11.4.2 CONVERT() ..ottt e e 540
11.4.3 CAST(Q) oo e i 540
11.4.4 SHOW Statements..................ccovivooo... 540
11.5 Unicode Support ... 542
11.6 UTFS8 for Metadataccoiiiiian... 542
11.7 Compatibility with Other DBMSs..................... 544
11.8 New Character Set Configuration File Format.......... 544
11.9 National Character Set 544
11.10 Upgrading Character Sets from MySQL 4.0........... 544

xi

11.10.1 4.0 Character Sets and Corresponding 4.1

Character Set/Collation Pairs.................... 545
11.10.2 Converting 4.0 Character Columns to 4.1 Format
... 546
11.11 Character Sets and Collations That MySQL Supports.. 547
11.11.1 Unicode Character Sets..................... 548
11.11.2 West European Character Sets 549
11.11.3 Central European Character Sets............ 550
11.11.4 South European and Middle East Character Sets
... 951
11.11.5 Baltic Character Sets 551
11.11.6 Cyrillic Character Sets...................... 552
11.11.7 Asian Character Sets 552
12 Column Typescovviiiieeeeennn.. 554
12.1 Column Type Overviewccoviieeeeeennnn.. 554
12.1.1 Overview of Numeric Types.................. 554
12.1.2 Overview of Date and Time Types............ 556
12.1.3 Overview of String Types 557
12.2 Numeric Types ... 560
12.3 Date and Time Types ..., 562

12.3.1 The DATETIME, DATE, and TIMESTAMP Types ... 564
12.3.1.1 TIMESTAMP Properties Prior to MySQL 4.1

.. 566
12.3.1.2 TIMESTAMP Properties as of MySQL 4.1

.. 567

12.3.2 The TIME Type........cooiiiiiiniiaa.. 570

12.3.3 The YEAR Type......coooiiniiin .. 570

12.3.4 Y2K Issues and Date Types.................. 571

12,4 String Types. ... 571
12.4.1 The CHAR and VARCHAR Types 571

12.4.2 The BLOB and TEXT Types.................... 573

12.4.3 The ENUM Type.....coviiiiniiiniina.. 574

1244 The SET Type....ovviriniiiii... 575

12.5 Column Type Storage Requirements................... 576
12.6 Choosing the Right Type for a Column 578

12.7 Using Column Types from Other Database Engines. 578

xii

13 Functions and Operators................ 580
13.1 Operatorsooeu et 580
13.1.1 Operator Precedence......................... 580

13.1.2 Parentheses................ ..., 581

13.1.3 Comparison Functions and Operators 581

13.1.4 Logical Operatorsccoovooo.. 585

13.1.5 Case-sensitivity Operators.................... 587

13.2 Control Flow Functions............................... 588
13.3 String Functions 589
13.3.1 String Comparison Functions................. 599

13.4 Numeric Functions 601
13.4.1 Arithmetic Operators........................ 601

13.4.2 Mathematical Functions...................... 602

13.5 Date and Time Functions............................. 607
13.6 Full-Text Search Functions............................ 623
13.6.1 Boolean Full-Text Searches................... 626

13.6.2 Full-Text Searches with Query Expansion 628

13.6.3 Full-Text Restrictions........................ 629

13.6.4 Fine-Tuning MySQL Full-Text Search......... 629

13.6.5 Full-Text Search TODO...................... 631

13.7 Cast Functions..........., 631
13.8 Other Functions, 633
13.8.1 Bit Functions 633

13.8.2 Encryption Functions........................ 634

13.8.3 Information Functions 637

13.8.4 Miscellaneous Functions...................... 642

13.9 Functions and Modifiers for Use with GROUP BY Clauses.. 644
13.9.1 GROUP BY (Aggregate) Functions 645

13.9.2 GROUP BY Modifiers 647

13.9.3 GROUP BY with Hidden Fields................. 650

14 SQL Statement Syntax.................. 652
14.1 Data Manipulation Statements........................ 652
14.1.1 DELETE Syntaxoovuueerinneennnn... 652

14.1.2 DO Syntax......oovueeiin i 654

14.1.3 HANDLER Syntaxcoveeiunineeinnnann. 654

14.1.4 INSERT Syntaxoveeiunneeinnneennn... 656
14.1.4.1 INSERT ... SELECT Syntax.......... 659

14.1.4.2 INSERT DELAYED Syntax 660

14.1.5 LOAD DATA INFILE SyntaxX.................... 661

14.1.6 REPLACE Syntaxc.veeiuineiinnan.. 669

14.1.7 SELECT Syntaxovuveeineeneennn... 670
14.1.7.1 JOIN Syntax..........cc.ooveeennnan.. 675

14.1.7.2 UNION Syntax................ooooo... 677

14.1.8 Subquery Syntax, 678
14.1.8.1 The Subquery as Scalar Operand. 679

14.1.8.2 Comparisons Using Subqueries. 680

14.1.8.3 Subqueries with ANY, IN, and SOME ... 680

xiii

14.1.8.4 Subqueries with ALL................. 681
14.1.8.5 Correlated Subqueries............... 682
14.1.8.6 EXISTS and NOT EXISTS 682
14.1.8.7 Row Subqueries..................... 683
14.1.8.8 Subqueries in the FROM clause. 683
14.1.8.9 Subquery Errors.................... 684
14.1.8.10 Optimizing Subqueries 685
14.1.8.11 Rewriting Subqueries as Joins for Earlier
MySQL Versions. 687
14.1.9 TRUNCATE Syntaxc.oveeiuuneeennneann. 688
14.1.10 UPDATE Syntaxoveeiuneennannn... 688
14.2 Data Definition Statements 690
14.2.1 ALTER DATABASE SyntaxX..........oovveuun.... 690
14.2.2 ALTER TABLE Syntax...................o..... 690
14.2.3 CREATE DATABASE Syntax..................... 695
14.2.4 CREATE INDEX Syntaxoouuueeon.. 695
14.2.5 CREATE TABLE Syntax........................ 696
14.2.5.1 Silent Column Specification Changes.. 707
14.2.6 DROP DATABASE Syntax.............coovvvn... 708
14.2.7 DROP INDEX Syntaxcovueeennn... 709
14.2.8 DROP TABLE Syntaxovvuuernn... 709
14.2.9 RENAME TABLE Syntax........................ 709
14.3 MySQL Utility Statements............................ 710
14.3.1 DESCRIBE Syntax (Get Information About
Columns) ... 710
14.3.2 USE Syntax........cooeeineeiineeineaenn.. 711
14.4 MySQL Transactional and Locking Statements......... 711
14.4.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax
... 712
14.4.2 Statements That Cannot Be Rolled Back. 712
14.4.3 Statements That Cause an Implicit Commit ... 713
14.4.4 SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax
... 713
14.4.5 LOCK TABLES and UNLOCK TABLES Syntax 713
14.4.6 SET TRANSACTION Syntax.............c.o...... 716
14.5 Database Administration Statements 716
14.5.1 Account Management Statements............. 716
14.5.1.1 DROP USER Syntax................... 716
14.5.1.2 GRANT and REVOKE Syntax 717
14.5.1.3 SET PASSWORD Syntax 723
14.5.2 Table Maintenance Statements 724
14.5.2.1 ANALYZE TABLE Syntax 724
14.5.2.2 BACKUP TABLE Syntax 724
14.5.2.3 CHECK TABLE Syntax 725
14.5.2.4 CHECKSUM TABLE Syntax 726
14.5.2.5 O0OPTIMIZE TABLE Syntax 727
14.5.2.6 REPAIR TABLE Syntax 727

14.5.2.7 RESTORE TABLE Syntax 728

Xiv

14.5.3 SET and SHOW Syntaxcoouuunn... 729
14.5.3.1 SET Syntax...........eeeuuneeenn... 730
14.5.3.2 SHOW CHARACTER SET Syntax......... 734
14.5.3.3 SHOW COLLATION Syntax 734
14.5.3.4 SHOW COLUMNS Syntax 735
14.5.3.5 SHOW CREATE DATABASE Syntax....... 735
14.5.3.6 SHOW CREATE TABLE Syntax 736
14.5.3.7 SHOW DATABASES Syntax 736
14.5.3.8 SHOW ENGINES Syntax 736
14.5.3.9 SHOW ERRORS Syntax 738
14.5.3.10 SHOW GRANTS Syntax 738
14.5.3.11 SHOW INDEX Syntax................. 738
14.5.3.12 SHOW INNODB STATUS Syntax........ 739
14.5.3.13 SHOW LOGS Syntax.................. 740
14.5.3.14 SHOW PRIVILEGES Syntax........... 740
14.5.3.15 SHOW PROCESSLIST Syntax.......... 741
14.5.3.16 SHOW STATUS Syntax 744
14.5.3.17 SHOW TABLE STATUS Syntax 745
14.5.3.18 SHOW TABLES Syntax 746
14.5.3.19 SHOW VARIABLES Syntax............ 746
14.5.3.20 SHOW WARNINGS Syntax 748

14.5.4 Other Administrative Statements............. 750
14.5.4.1 CACHE INDEX Syntax 750
14.5.4.2 FLUSH Syntax..............coooo.... 751
14.5.4.3 KILL Syntax..........cooueeeunnon.. 752
14.5.4.4 LOAD INDEX INTO CACHE Syntax...... 753
14.5.4.5 RESET Syntax....................... 754

14.6 Replication Statements 754

14.6.1 SQL Statements for Controlling Master Servers

... 754
14.6.1.1 PURGE MASTER LOGS Syntax 754
14.6.1.2 RESET MASTER Syntax 755
14.6.1.3 SET SQL_LOG_BIN Syntax............ 755
14.6.1.4 SHOW BINLOG EVENTS Syntax......... 755
14.6.1.5 SHOW MASTER LOGS Syntax 756
14.6.1.6 SHOW MASTER STATUS Syntax......... 756
14.6.1.7 SHOW SLAVE HOSTS Syntax 756

14.6.2 SQL Statements for Controlling Slave Servers.. 756
14.6.2.1 CHANGE MASTER TO Syntax 756
14.6.2.2 LOAD DATA FROM MASTER Syntax 759
14.6.2.3 LOAD TABLE tbl_name FROM MASTER

SYNEAX « « vttt 759
14.6.2.4 MASTER_POS_WAIT() Syntax 760
14.6.2.5 RESET SLAVE Syntax 760
14.6.2.6 SET GLOBAL SQL_SLAVE_SKIP_COUNTER

SYNEAX « v ettt e e e 760
14.6.2.7 SHOW SLAVE STATUS Syntax 760

14.6.2.8 START SLAVE Syntax 764

XV

14.6.2.9 STOP SLAVE Syntax.................. 765

15 MySQL Storage Engines and Table Types

15.1

15.2

15.3
154

15.5

16 The

16.1
16.2
16.3
16.4
16.5
16.6

16.7

................................... 766
The MyISAM Storage Engine........................... 767
15.1.1 MyISAM Startup Options...................... 769
15.1.2 Space Needed for Keys....................... 770
15.1.3 MyISAM Table Storage Formats................ 771
15.1.3.1 Static (Fixed-Length) Table
Characteristics. 771
15.1.3.2 Dynamic Table Characteristics....... 772
15.1.3.3 Compressed Table Characteristics 773
15.1.4 MyISAM Table Problems...................... 773
15.1.4.1 Corrupted MyISAM Tables............ 773
15.1.4.2 Problems from Tables Not Being Closed
Properly o 774
The MERGE Storage Engine............................ 775
15.2.1 MERGE Table Problems T
The MEMORY (HEAP) Storage Engine 778
The BDB (BerkeleyDB) Storage Engine................. 780
15.4.1 Operating Systems Supported by BDB 781
15.4.2 Installing BDBcoviiiinneeinnnennn.. 781
15.4.3 BDB Startup Options......................... 781
15.4.4 Characteristics of BDB Tables................. 783
15.4.5 Things We Need to Fix for BDB............... 784
15.4.6 Restrictions on BDB Tables 785
15.4.7 FErrors That May Occur When Using BDB Tables
... 785
The ISAM Storage Engine............................. 785
InnoDB Storage Engine.............. 787
InnoDB OVervIEWottt et e 787
InnoDB Contact Information 787
InnoDBin MySQL 3.23o i 788
InnoDB Configurationciiiei.... 788
InnoDB Startup Optionsoo oo, 793
Creating the InnoDB Tablespace....................... 796
16.6.1 Dealing with InnoDB Initialization Problems... 798
Creating InnoDB Tables............................... 798
16.7.1 How to Use Transactions in InnoDB with Different
APIs. . 798
16.7.2 Converting MyISAM Tables to InnoDB.......... 799
16.7.3 How an AUTO_INCREMENT Column Works in InnoDB
... 800
16.7.4 FOREIGN KEY Constraints..................... 801
16.7.5 InnoDB and MySQL Replication.............. 805

16.7.6 Using Per-Table Tablespaces 805

Xvi

16.8 Adding and Removing InnoDB Data and Log Files. 807
16.9 Backing Up and Recovering an InnoDB Database 808
16.9.1 Forcing Recovery 810
16.9.2 Checkpoints............... i 811
16.10 Moving an InnoDB Database to Another Machine. 811
16.11 InnoDB Transaction Model and Locking............... 812
16.11.1 InnoDB and AUTOCOMMIT 812
16.11.2 InnoDB and TRANSACTION ISOLATION LEVEL .. 812
16.11.3 Consistent Non-Locking Read 814
16.11.4 Locking Reads SELECT ... FOR UPDATE and
SELECT ... LOCK IN SHAREMODE 814
16.11.5 Next-Key Locking: Avoiding the Phantom
Problem 815
16.11.6 An Example of How the Consistent Read Works in
InnoDB. . ..o 816
16.11.7 Locks Set by Different SQL Statements in InnoDB
... 817
16.11.8 When Does MySQL Implicitly Commit or Roll
Back a Transaction? 818
16.11.9 Deadlock Detection and Rollback............ 819
16.11.10 How to Cope with Deadlocks............... 819
16.12 InnoDB Performance Tuning Tips..................... 820
16.12.1 SHOW INNODB STATUS and the InnoDB Monitors
... 822
16.13 Implementation of Multi-Versioning 827
16.14 Table and Index Structures 828
16.14.1 Physical Structure of an Index............... 828
16.14.2 Insert Buffering 828
16.14.3 Adaptive Hash Indexes. 829
16.14.4 Physical Record Structure................... 829
16.15 File Space Management and Disk I/O 830
16.15.1 Disk I/O. ... 830
16.15.2 Using Raw Devices for the Tablespace........ 830
16.15.3 File Space Management 831
16.15.4 Defragmenting a Table...................... 832
16.16 FError Handling 832
16.16.1 TInnoDB Error Codes 833
16.16.2 Operating System Error Codes 833
16.17 Restrictions on InnoDB Tables........................ 837
16.18 InnoDB Troubleshooting 839

16.18.1 Troubleshooting InnoDB Data Dictionary
Operations 839

xvii

17 MySQL Cluster 842
17.1 MySQL Cluster Overview..............ccooiviiin... 842
17.2 Basic MySQL Cluster Conceptsoovvnn... 842
17.3 MySQL Cluster Configuration......................... 843

17.3.1 Building the Software........................ 844
17.3.2 Installing the Software 844
17.3.3 Configuration File........................ ... 845
17.3.3.1 An example configuration in a MySQL
Cluster...........coiiiiiiia... 845
17.3.3.2 Defining the computers in a MySQL
Cluster...........coiiiii i 846
17.3.3.3 Defining the management server in a
MySQL Cluster.......................... 847
17.3.3.4 Defining the storage nodes in a MySQL
Cluster...........ciiiiii ... 848
17.3.3.5 Defining the MySQL Servers in a MySQL
Cluster........oooiiiiii i 860
17.3.3.6 Defining TCP/IP connections in a MySQL
Cluster. ... 860
17.3.3.7 Defining shared memory connections in a
MySQL Cluster.......................... 861
17.3.3.8 Configuring recovery parts in a MySQL
Cluster..........oooiiiiii.. 862
17.4 Process Management in MySQL Cluster 862
17.4.1 MySQL Server Process Usage for MySQL Cluster
... 862
17.4.2 ndbd, the Storage Engine Node Process 863
17.4.3 ndb_mgmd, the Management Server Process 864
17.4.4 ndb_mgm, the Management Client Process 865
17.4.5 Command Options for MySQL Cluster Processes
... 865
17.4.5.1 MySQL Cluster-Related Command
Options for mysqld 865
17.4.5.2 Command Options for ndbd 866
17.4.5.3 Command Options for ndb_mgmd 866
17.4.5.4 Command Options for ndb_mgm 867
17.5 Management of MySQL Cluster....................... 867

18 Introduction to MaxDB................. 868
18.1 Historyof MaxDB 868
18.2 Licensing and Support..............oooiiiiiii.. 868
18.3 MaxDB-Related Links................................ 868
18.4 Basic Concepts of MaxDB 868
18.5 Feature Differences Between MaxDB and MySQL 869
18.6 Interoperability Features Between MaxDB and MySQL. . 869
18.7 Reserved Words in MaxDB 870

xviii

19 Spatial Extensions in MySQL 874

19.1 Imtroduction........... ... 874
19.2 The OpenGIS Geometry Model 874
19.2.1 The Geometry Class Hierarchy 875
19.2.2 Class Geometry.......covviinnnnneeeeeen.. 876
19.23 ClassPoint........coiiiiiiiiniiin... 877
19.24 Class Curveovviiiniii e 877
19.2.5 Class LineStringccovvvneeeeeennnn... 878
19.2.6 ClassSurface............oiiiiiinneeinna.. 878
19.2.7 Class Polygon............oouiiiiiiiin... 878
19.2.8 Class GeometryCollection 879
19.2.9 Class MultiPointoovuveennnnan.. 879
19.2.10 Class MultiCurvecovveiruunnn... 879
19.2.11 Class MultiLineString..................... 880
19.2.12 Class MultiSurfaceooviina... 880
19.2.13 Class MultiPolygonccouvveen... 880
19.3 Supported Spatial Data Formats 881
19.3.1 Well-Known Text (WKT) Format............. 881
19.3.2 Well-Known Binary (WKB) Format........... 882
19.4 Creating a Spatially Enabled MySQL Database......... 882
19.4.1 MySQL Spatial Data Types.................. 883
19.4.2 Creating Spatial Values...................... 883
19.4.2.1 Creating Geometry Values Using WKT
Functions, 883
19.4.2.2 Creating Geometry Values Using WKB
Functions 884
19.4.2.3 Creating Geometry Values Using
MySQL-Specific Functions................ 885
19.4.3 Creating Spatial Columns 886
19.4.4 Populating Spatial Columns.................. 886
19.4.5 Fetching Spatial Data........................ 888
19.4.5.1 Fetching Spatial Data in Internal Format
.. 888
19.4.5.2 Fetching Spatial Data in WKT Format
.. 888
19.4.5.3 Fetching Spatial Data in WKB Format
.. 888
19.5 Analyzing Spatial Information 888
19.5.1 Geometry Format Conversion Functions....... 889
19.5.2 Geometry Functions 889
19.5.2.1 General Geometry Functions......... 889
19.5.2.2 Point Functions.................... 891
19.5.2.3 LineString Functions............... 891
19.5.2.4 MultilineString Functions......... 893
19.5.2.5 Polygon Functions.................. 893
19.5.2.6 MultiPolygon Functions............ 894

19.5.2.7 GeometryCollection Functions...... 895

19.5.3 Functions That Create New Geometries from

Existing Ones 895
19.5.3.1 Geometry Functions That Produce New
Geometries. ... 896
19.5.3.2 Spatial Operators................... 896
19.5.4 Functions for Testing Spatial Relations Between
Geometric Objects i 896
19.5.5 Relations on Geometry Minimal Bounding
Rectangles (MBRS) 896
19.5.6 Functions That Test Spatial Relationships Between
GeomEtTies . ..ottt 897
19.6 Optimizing Spatial Analysis........................... 899
19.6.1 Creating Spatial Indexes 899
19.6.2 Using a Spatial Index........................ 900
19.7 MySQL Conformance and Compatibility............... 902

19.7.1 GIS Features That Are Not Yet Implemented .. 902

20 Stored Procedures and Functions........ 903
20.1 Stored Procedure Syntax, 903
20.1.1 Maintaining Stored Procedures............... 904
20.1.1.1 CREATE PROCEDURE and CREATE FUNCTION
.. 904
20.1.1.2 ALTER PROCEDURE and ALTER FUNCTION
.. 906

20.1.1.3 DROP PROCEDURE and DROP FUNCTION.. 906
20.1.1.4 SHOW CREATE PROCEDURE and SHOW CREATE

FUNCTIONci 906

20.1.2 SHOW PROCEDURE STATUS and SHOW FUNCTION
STATUS 907
20.1.3 CALL. ...ttt 907
20.1.4 BEGIN ... END Compound Statement 907
20.1.5 DECLARE Statement 907
20.1.6 Variables in Stored Procedures 907
20.1.6.1 DECLARE Local Variables............. 908
20.1.6.2 Variable SET Statement.............. 908
20.1.6.3 SELECT ... INTO Statement 908
20.1.7 Conditions and Handlers..................... 908
20.1.7.1 DECLARE Conditions................. 908
20.1.7.2 DECLARE Handlers................... 908
20.1.8 CUISOTS . . oot et e et e 910
20.1.8.1 Declaring Cursors................... 911
20.1.8.2 Cursor OPEN Statement.............. 911
20.1.8.3 Cursor FETCH Statement............. 911
20.1.8.4 Cursor CLOSE Statement............. 911
20.1.9 Flow Control Constructs..................... 911
20.1.9.1 1IF Statement....................... 911
20.1.9.2 CASE Statement..................... 911

20.1.9.3 LOOP Statement..................... 912

XX

20.1.9.4 LEAVE Statement.................... 912
20.1.9.5 TITERATE Statement 912
20.1.9.6 REPEAT Statement................... 913
20.1.9.7 WHILE Statement.................... 913
21 MySQL APIs.....ccovvviiiiiinnnn.. 915
21.1 MySQL Program Development Utilities................ 915
21.1.1 msql2mysql, Convert mSQL Programs for Use with
MySQL .o 915
21.1.2 mysql_config, Get compile options for compiling
clients ... 915
21.2 MySQL C APIL. 916
21.2.1 CAPIDatatypes........oovuiieiinnaa... 917
21.2.2 C API Function Overview.................... 920
21.2.3 C API Function Descriptions................. 924
21.2.3.1 mysql_affected_rows() 924
21.2.3.2 mysql_change_user() 925
21.2.3.3 mysql_character_set_name()....... 926
21.2.34 mysql_close()c..... 927
21.2.3.5 mysql_connect()................... 927
21.2.3.6 mysql_create_db() 928
21.2.3.7 mysql_data_seek() 928
21.2.3.8 mysql_debug() 929
21.2.3.9 mysql_drop_db()................... 929
21.2.3.10 mysql_dump_debug_info()......... 930
21.2.3.11 mysql_eof () 931
21.2.3.12 mysql_errno() 932
21.2.3.13 mysql_error() 933
21.2.3.14 mysql_escape_string() 933
21.2.3.15 mysql_fetch_field() 933
21.2.3.16 mysql_fetch_fields() 934
21.2.3.17 mysql_fetch_field_direct() 935
21.2.3.18 mysql_fetch_lengths() 936
21.2.3.19 mysql_fetch_row() 937
21.2.3.20 mysql_field_count() 938
21.2.3.21 mysql_field_seek() 939
21.2.3.22 mysql_field_tell() 939
21.2.3.23 mysql_free_result() 940
21.2.3.24 mysql_get_client_info()......... 940
21.2.3.25 mysql_get_client_version() 941
21.2.3.26 mysql_get_host_info() 941
21.2.3.27 mysql_get_proto_info() 941
21.2.3.28 mysql_get_server_info()......... 942
21.2.3.29 mysql_get_server_version() 942
21.2.3.30 mysql_info() 943
21.2.3.31 mysql_init() 943
21.2.3.32 mysql_insert_id() 944
21.2.3.33 mysql_kill()ccoo.n. 945

poel

21.2.3.34 mysql_list_dbs(Q................. 945
21.2.3.35 mysql_list_fields() 946
21.2.3.36 mysql_list_processes().......... 947
21.2.3.37 mysql_list_tables() 947
21.2.3.38 mysql_num_fields() 948
21.2.3.39 mysql_num_rows()................. 949
21.2.3.40 mysql_options().................. 950
21.2.3.41 mysql_ping(O) 952
21.2.3.42 mysql_query() 953
21.2.3.43 mysql_real_connect() 954
21.2.3.44 mysql_real_escape_string() 956
21.2.3.45 mysql_real_query() 957
21.2.3.46 mysql_reload()................... 958
21.2.3.47 mysql_row_seek()................. 959
21.2.3.48 mysql_row_tell()................. 959
21.2.3.49 mysql_select_db() 960
21.2.3.50 mysql_set_server_option()....... 960
21.2.3.51 mysql_shutdown()................. 961
21.2.3.52 mysql_sqlstate()................. 962
21.2.3.53 mysql_ssl_setO.................. 962
21.2.3.54 mysql_stat() 963
21.2.3.55 mysql_store_result() 963
21.2.3.56 mysql_thread_id() 965
21.2.3.57 mysql_use_result() 965
21.2.3.58 mysql_warning_count() 966
21.2.3.59 mysql_commit()................... 966
21.2.3.60 mysql_rollback()................. 967
21.2.3.61 mysql_autocommit() 967
21.2.3.62 mysql_more_results() 968
21.2.3.63 mysql_next_result() 968
C API Prepared Statements.................. 969
C API Prepared Statement Data types........ 969
C API Prepared Statement Function Overview
... 972
C API Prepared Statement Function Descriptions
... 975
21.2.7.1 mysql_stmt_init() 975
21.2.7.2 mysql_stmt_bind_param().......... 976
21.2.7.3 mysql_stmt_bind_result()......... 977
21.2.74 mysql_stmt_execute() 978
21.2.7.5 mysql_stmt_fetch() 982
21.2.76 mysql_stmt_fetch_column()........ 987
21.2.7.7 mysql_stmt_result_metadata() 987
21.2.7.8 mysql_stmt_param_count()......... 988
21.2.7.9 mysql_stmt_param_metadata() 989
21.2.7.10 mysql_stmt_prepare() 989
21.2.7.11 mysql_stmt_send_long_data() 990

21.2.7.12 mysql_stmt_affected_rows() 992

xXx1i

21.2.7.13 mysql_stmt_insert_id().......... 993
21.2.7.14 mysql_stmt_close() 993
21.2.7.15 mysql_stmt_data_seek().......... 994
21.2.7.16 mysql_stmt_errno() 994
21.2.7.17 mysql_stmt_error() 995
21.2.7.18 mysql_stmt_free_result()........ 996
21.2.7.19 mysql_stmt_num_rows() 996
21.2.720 mysql_stmt_reset() 996
21.2.7.21 mysql_stmt_row_seek() 997
21.2.7.22 mysql_stmt_row_tell() 998
21.2.7.23 mysql_stmt_sqlstate() 998
21.2.7.24 mysql_stmt_store_result()....... 998
21.2.7.25 mysql_stmt_attr_set() 999
21.2.7.26 mysql_stmt_attr_get() 1000
21.2.8 C API Handling of Multiple Query Execution
.. 1000
21.2.9 C API Handling of Date and Time Values. ... 1001
21.2.10 C API Threaded Function Descriptions 1003
21.2.10.1 my_init() ...l 1003
21.2.10.2 mysql_thread_init() 1003
21.2.10.3 mysql_thread_end() 1003
21.2.10.4 mysql_thread_safe() 1004
21.2.11 C API Embedded Server Function Descriptions
.. 1004
21.2.11.1 mysql_server_init() 1004
21.2.11.2 mysql_server_end() 1005
21.2.12 Common questions and problems when using the
CAPIL .. 1006

21.2.12.1 Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns

SUCCESS .+ vttt i 1006
21.2.12.2 What Results You Can Get from a Query
....................................... 1006
21.2.12.3 How to Get the Unique ID for the Last
Inserted Row........................... 1007
21.2.12.4 Problems Linking with the C API.. 1007
21.2.13 Building Client Programs 1008
21.2.14 How to Make a Threaded Client............ 1008
21.2.15 libmysqld, the Embedded MySQL Server Library
.. 1010
21.2.15.1 Overview of the Embedded MySQL
Server Library.......................... 1010
21.2.15.2 Compiling Programs with 1ibmysqld
....................................... 1010
21.2.15.3 Restrictions when using the Embedded
MySQL Server.............. 1010

21.2.15.4 Using Option Files with the Embedded
SEIVET © ittt 1011

xx1il

XX1V

21.2.15.5 Things left to do in Embedded Server

(TODO) ..o 1011

21.2.15.6 A Simple Embedded Server Example
....................................... 1011
21.2.15.7 Licensing the Embedded Server.... 1015
21.3 MySQL ODBC Support ..., .. 1015
21.3.1 How to Install MyODBC.................... 1015

21.3.2 How to Fill in the Various Fields in the ODBC
Administrator Program 1016
21.3.3 Connect parameters for MyODBC 1017
21.3.4 How to Report Problems with MyODBC.. 1018

21.3.5 Programs Known to Work with MyODBC. ... 1019
21.3.6 How to Get the Value of an AUTO_INCREMENT

Columnin ODBC 1023

21.3.7 Reporting Problems with MyODBC 1024

21.4 MySQL Java Connectivity (JDBC)................... 1025

21.5 MySQL PHP APIL...... 1025

21.5.1 Common Problems with MySQL and PHP ... 1025

21.6 MySQL Perl APT 1025

21.7 MySQL C++ APL 1026

21.71 Borland CH++ 1026

21.8 MySQL Python APT 1026

219 MySQL Tcl APL.... 1027

21.10 MySQL Eiffel Wrapper............................. 1027

22 Error Handling in MySQL 1028
23 Extending MySQL..................... 1050
23.1 MySQL Internalso i, 1050

23.1.1 MySQL Threadsooiiii.. 1050

23.1.2 MySQL Test Suite.......................... 1050

23.1.2.1 Running the MySQL Test Suite. 1051

23.1.2.2 Extending the MySQL Test Suite ... 1051
23.1.2.3 Reporting Bugs in the MySQL Test Suite

....................................... 1052
23.2 Adding New Functions to MySQL.................... 1053
23.2.1 CREATE FUNCTION/DROP FUNCTION Syntax 1054
23.2.2 Adding a New User-defined Function......... 1054
23.2.2.1 UDF Calling Sequences for simple

functions.......... 1056

23.2.2.2 UDF Calling Sequences for aggregate
functions..........l 1057
23.2.2.3 Argument Processing............... 1058

23.2.2.4 Return Values and Error Handling .. 1059
23.2.2.5 Compiling and Installing User-defined
Functions 1060
23.2.3 Adding a New Native Function.............. 1062
23.3 Adding New Procedures to MySQL................... 1063

XXV

23.3.1 Procedure Analyse.......................... 1063
23.3.2 Writing a Procedure 1063

Appendix A Problems and Common Errors

...................................... 1064
A.1 How to Determine What Is Causing a Problem 1064
A.2 Common Errors When Using MySQL Programs. 1065
A21 Accessdeniediiiiiii... 1065
A.2.2 Can’t connect to [local] MySQL server 1065
A.2.3 Client does not support authentication
protocol 1067
A.2.4 Password Fails When Entered Interactively ... 1068
A.2.5 Host ’host_name’ is blocked 1068
A.2.6 Too many connections...................... 1069
A27 Outofmemory.............................. 1069
A.2.8 MySQL server has gone away 1069
A29 Packettoolargeoouviiiiniin. 1070
A.2.10 Communication Errors and Aborted Connections
.. 1071
A.2.11 Thetableisfull......................... 1072
A.2.12 Can’t create/write to file............... 1073
A.2.13 Commands out of Sync 1073
A214 Ignoringuserc..oeeooo... 1074
A.2.15 Table ’tbl_name’ doesn’t exist.......... 1074
A.2.16 Can’t initialize character set.......... 1074
A217 FileNotFound 1075
A.3 Installation-Related Issues............................ 1076
A.3.1 Problems Linking to the MySQL Client Library
.. 1076
A.3.2 How to Run MySQL as a Normal User 1077
A.3.3 Problems with File Permissions 1078
A.4 Administration-Related Issues........................ 1078
A.4.1 How to Reset the Root Password............. 1078
A.4.2 What to Do If MySQL Keeps Crashing 1080
A.4.3 How MySQL Handles a Full Disk 1082
A.4.4 Where MySQL Stores Temporary Files 1083
A.4.5 How to Protect or Change the MySQL Socket File
/tmp/mysql.SOCK 1084
A.4.6 Time Zone Problems........................ 1084
A5 Query-Related Issueso . 1085
A.5.1 Case Sensitivity in Searches.................. 1085
A.5.2 Problems Using DATE Columns............... 1085
A.5.3 Problems with NULL Values 1086
A.5.4 Problems with Column Aliases............... 1087
A.5.5 Rollback Failure for Non-Transactional Tables
.. 1088
A.5.6 Deleting Rows from Related Tables........... 1088

A.5.7 Solving Problems with No Matching Rows 1089

XXV1

A.5.8 Problems with Floating-Point Comparisons ... 1089

A.6 Optimizer-Related Issues............................. 1092
A.7 Table Definition-Related Issues....................... 1092
A.7.1 Problems with ALTER TABLE 1092
A.7.2 How to Change the Order of Columns in a Table
.. 1093
A.7.3 TEMPORARY TABLE Problems.................. 1094
Appendix B Credits 1095
B.1 Developers at MySQL AB............................ 1095
B.2 Contributors to MySQL 1098
B.3 Documenters and translators 1102
B.4 Libraries used by and included with MySQL........... 1103
B.5 Packages that support MySQL........................ 1104
B.6 Tools that were used to create MySQL 1104
B.7 Supporters of MySQL 1105
Appendix C MySQL Change History....... 1106
C.1 Changes in release 5.0.x (Development)................ 1106
C.1.1 Changes in release 5.0.2 (not released yet) 1106
C.1.2 Changes in release 5.0.1 (27 Jul 2004) 1107
C.1.3 Changes in release 5.0.0 (22 Dec 2003: Alpha)
.. 1111
C.2 Changes in release 4.1.x (Beta) 1111
C.2.1 Changes in release 4.1.4 (to be released soon).. 1112
C.2.2 Changes in release 4.1.3 (28 Jun 2004: Beta) .. 1113
C.2.3 Changes in release 4.1.2 (28 May 2004) 1116
C.2.4 Changes in release 4.1.1 (01 Dec 2003)........ 1125
C.2.5 Changes in release 4.1.0 (03 Apr 2003: Alpha)
.. 1129
C.3 Changes in release 4.0.x (Production) 1132
C.3.1 Changes in release 4.0.21 (not released yet) ... 1133
C.3.2 Changes in release 4.0.20 (17 May 2004) 1134
C.3.3 Changes in release 4.0.19 (04 May 2004) 1134
C.3.4 Changes in release 4.0.18 (12 Feb 2004) 1138
C.3.5 Changes in release 4.0.17 (14 Dec 2003)....... 1140
C.3.6 Changes in release 4.0.16 (17 Oct 2003)....... 1143
C.3.7 Changes in release 4.0.15 (03 Sep 2003) 1146
C.3.8 Changes in release 4.0.14 (18 Jul 2003) 1150
C.3.9 Changes in release 4.0.13 (16 May 2003) 1153
C.3.10 Changes in release 4.0.12 (15 Mar 2003:
Production)o 1157
C.3.11 Changes in release 4.0.11 (20 Feb 2003)...... 1158
C.3.12 Changes in release 4.0.10 (29 Jan 2003)...... 1159
C.3.13 Changes in release 4.0.9 (09 Jan 2003)....... 1161
C.3.14 Changes in release 4.0.8 (07 Jan 2003) 1161

C.3.15 Changes in release 4.0.7 (20 Dec 2002)....... 1162

.17 Changes in release 4.0.5 (13 Nov 2002).......

C.3.18 Changes in release 4.0.4 (29 Sep 2002).......
C.3.19 Changes in release 4.0.3 (26 Aug 2002: Beta)

C.3.20 Changes in release 4.0.2 (01 Jul 2002)

C.3.2

.21 Changes in release 4.0.1 (23 Dec 2001).......

2 Changes in release 4.0.0 (Oct 2001: Alpha). ..

C.4 Changes in release 3.23.x (Recent; still supported)......

C4.1
C.4.2
C.4.3
C4.4
C.4.5
C.4.6
C.4.7
C.4.8
C.4.9

Changes in release 3.23.59 (not released yet) ..
Changes in release 3.23.58 (11 Sep 2003)......
Changes in release 3.23.57 (06 Jun 2003)......
Changes in release 3.23.56 (13 Mar 2003)
Changes in release 3.23.55 (23 Jan 2003)......
Changes in release 3.23.54 (05 Dec 2002)......
Changes in release 3.23.53 (09 Oct 2002)......
Changes in release 3.23.52 (14 Aug 2002)
Changes in release 3.23.51 (31 May 2002)

C.4.10 Changes in release 3.23.50 (21 Apr 2002).....

C4.1
C4.1

C.4.13 Changes in release 3.23.47
C.4.14 Changes in release 3.23.46

C4.1

C.4.16 Changes in release 3.23.44

C4.1

C.4.18 Changes in release 3.23.42
C.4.19 Changes in release 3.23.41

1 Changes in release 3.23.49
2 Changes in release 3.23.48 (07 Feb 2002).....
27 Dec 2001).....
29 Nov 2001)
22 Nov 2001)
31 Oct 2001).
04 Oct 2001).
08 Sep 2001)
11 Aug 2001) ...

5 Changes in release 3.23.45

7 Changes in release 3.23.43

NN N N N N N

C.4.20 Changes in release 3.23.40

C.4.2
C.4.2

1 Changes in release 3.23.39 (12 Jun 2001).....
2 Changes in release 3.23.38 (09 May 2001)

C.4.24 Changes in release 3.23.36 (27 Mar 2001)

C.4.2

(
(
C.4.23 Changes in release 3.23.37 (17 Apr 2001).....
(
(

5 Changes in release 3.23.35 (15 Mar 2001)

C.4.26 Changes in release 3.23.34a

C.4.2

7 Changes in release 3.23.34 (10 Mar 2001)

C.4.28 Changes in release 3.23.33 (09 Feb 2001).....
C.4.29 Changes in release 3.23.32 (22 Jan 2001:
Production) i

C.4.30 Changes in release 3.23.31

C.4.3
C.4.3

C.4.33 Changes in release 3.23.28

17 Jan 2001).....
04 Jan 2001).....
16 Dec 2000).

1 Changes in release 3.23.30
2 Changes in release 3.23.29

T L

C.4.34 Changes in release 3.23.27 (24 Oct 2000).. ...

.35 Changes in release 3.23.26 (18 Oct 2000).

C.4.36 Changes in release 3.23.25 (29 Sep 2000)

Changes in release 4.0.6 (14 Dec 2002: Gamma)

1162
1163
1166

1192
1193

1195
1195
1196
1197

22 Nov 2000: Gamma)

1198
1200
1200
1201

xXxXVvii

C.4.37 Changes in release 3.23.24 (08 Sep 2000)..... 1202
C.4.38 Changes in release 3.23.23 (01 Sep 2000)..... 1202
C.4.39 Changes in release 3.23.22 (31 Jul 2000) 1204
C.4.40 Changes in release 3.23.21 1204
C.4.41 Changes in release 3.23.20 1205
C.4.42 Changes in release 3.23.19 1205
C.4.43 Changes in release 3.23.18 1205
C.4.44 Changes in release 3.23.17 1206
C.4.45 Changes in release 3.23.16 1206
C.4.46 Changes in release 3.23.15 (May 2000: Beta)
.. 1207
C.4.47 Changes in release 3.23.14 1208
C.4.48 Changes in release 3.23.13 1208
C.4.49 Changes in release 3.23.12 (07 Mar 2000) 1209
C.4.50 Changes in release 3.23.11 1209
C.4.51 Changes in release 3.23.10 1210
C.4.52 Changes in release 3.23.9 1210
C.4.53 Changes in release 3.23.8 (02 Jan 2000)...... 1211
C.4.54 Changes in release 3.23.7 (10 Dec 1999)...... 1211
C.4.55 Changes in release 3.23.6 1212
C.4.56 Changes in release 3.23.5 (20 Oct 1999)...... 1213
C.4.57 Changes in release 3.23.4 (28 Sep 1999)...... 1214
C.4.58 Changes in release 3.23.3 1214
C.4.59 Changes in release 3.23.2 (09 Aug 1999) 1215
C.4.60 Changes in release 3.23.1 1216
C.4.61 Changes in release 3.23.0 (05 Aug 1999: Alpha)
.. 1216
C.5 Changes in release 3.22.x (Old; discontinued) 1218
C.5.1 Changes in release 3.22.35 1218
C.5.2 Changes in release 3.22.34 1218
C.5.3 Changes in release 3.22.33 1218
C.5.4 Changes in release 3.22.32 (14 Feb 2000) 1218
C.5.5 Changes in release 3.22.31 1218
C.5.6 Changes in release 3.22.30 1218
C.5.7 Changes in release 3.22.29 (02 Jan 2000)...... 1219
C.5.8 Changes in release 3.22.28 (20 Oct 1999)...... 1219
C.5.9 Changes in release 3.22.27 1219
C.5.10 Changes in release 3.22.26 (16 Sep 1999)..... 1219
C.5.11 Changes in release 3.22.25 1220
C.5.12 Changes in release 3.22.24 (05 Jul 1999) 1220
C.5.13 Changes in release 3.22.23 (08 Jun 1999)..... 1220
C.5.14 Changes in release 3.22.22 (30 Apr 1999)..... 1220
C.5.15 Changes in release 3.22.21 1221
C.5.16 Changes in release 3.22.20 (18 Mar 1999) 1221
C.5.17 Changes in release 3.22.19 (Mar 1999: Production)
.. 1221
C.5.18 Changes in release 3.22.18 1221
C.5.19 Changes in release 3.22.17 1221

xxviil

C.5.20 Changes in release 3.22.16 (Feb 1999: Gamma)
.. 1222
C.5.21 Changes in release 3.22.15 1222
C.5.22 Changes in release 3.22.14 1222
C.5.23 Changes in release 3.22.13 1223
C.5.24 Changes in release 3.22.12 1223
C.5.25 Changes in release 3.22.11 1223
C.5.26 Changes in release 3.22.10 1224
C.5.27 Changes in release 3.22.9 1225
C.5.28 Changes in release 3.22.8 1225
C.5.29 Changes in release 3.22.7 (Sep 1998: Beta)... 1226
C.5.30 Changes in release 3.22.6 1226
C.5.31 Changes in release 3.22.5 1226
C.5.32 Changes in release 3.22.4 1228
C.5.33 Changes in release 3.22.3 1229
C.5.34 Changes in release 3.22.2 1229
C.5.35 Changes in release 3.22.1 (Jun 1998: Alpha).. 1229
C.5.36 Changes in release 3.22.0 1230
C.6 Changes in release 3.21.X . ..o, 1231
C.6.1 Changes in release 3.21.33 1231
C.6.2 Changes in release 3.21.32 1232
C.6.3 Changes in release 3.21.31 1232
C.6.4 Changes in release 3.21.30 1232
C.6.5 Changes in release 3.21.29 1233
C.6.6 Changes in release 3.21.28 1233
C.6.7 Changes in release 3.21.27 1233
C.6.8 Changes in release 3.21.26 1234
C.6.9 Changes in release 3.21.25 1234
C.6.10 Changes in release 3.21.24 1234
C.6.11 Changes in release 3.21.23 1234
C.6.12 Changes in release 3.21.22 1235
C.6.13 Changes in release 3.21.21a................. 1236
C.6.14 Changes in release 3.21.21 1236
C.6.15 Changes in release 3.21.20 1236
C.6.16 Changes in release 3.21.19 1236
C.6.17 Changes in release 3.21.18 1236
C.6.18 Changes in release 3.21.17 1237
C.6.19 Changes in release 3.21.16 1237
C.6.20 Changes in release 3.21.15 1237
C.6.21 Changes in release 3.21.14b 1238
C.6.22 Changes in release 3.21.14a 1238
C.6.23 Changes in release 3.21.13 1239
C.6.24 Changes in release 3.21.12.................. 1239
C.6.25 Changes in release 3.21.11 1240
C.6.26 Changes in release 3.21.10 1240
C.6.27 Changes in release 3.21.9 1241
C.6.28 Changes in release 3.21.8 1241
C.6.29 Changes in release 3.21.7 1242

XXIX

C.6.30 Changes in release 3.21.6 1242
C.6.31 Changes in release 3.21.5 1242
C.6.32 Changes in release 3.21.4 1242
C.6.33 Changes in release 3.21.3 1242
C.6.34 Changes in release 3.21.2 1243
C.6.35 Changes in release 3.21.0 1244
C.7 Changesinrelease 3.20.X.........ovviieinennnnn... 1245
C.7.1 Changes in release 3.20.18 1245
C.7.2 Changes in release 3.20.17 1246
C.7.3 Changes in release 3.20.16 1246
C.7.4 Changes in release 3.20.15 1247
C.7.5 Changes in release 3.20.14 1247
C.7.6 Changes in release 3.20.13 1248
C.7.7 Changes in release 3.20.11 1248
C.7.8 Changes in release 3.20.10 1248
C.7.9 Changes in release 3.20.9 1249
C.7.10 Changes in release 3.20.8 1249
C.7.11 Changes in release 3.20.7 1249
C.7.12 Changes in release 3.20.6 1249
C.7.13 Changes in release 3.20.3 1251
C.7.14 Changes in release 3.20.0 1251
C.8 Changesinrelease 3.19.x........, 1252
C.8.1 Changes in release 3.19.5 1252
C.8.2 Changes in release 3.19.4 1252
C.8.3 Changes in release 3.19.3 1253
C.9 InnoDB Change History 1253
C.9.1 MySQL/InnoDB-4.1.4, not released yet 1253
C.9.2 MySQL/InnoDB-4.0.21, not released yet 1253
C.9.3 MySQL/InnoDB-4.1.3, June 28, 2004 1254
C.9.4 MySQL/InnoDB-4.1.2, May 30, 2004 1255
C.9.5 MySQL/InnoDB-4.0.20, May 18, 2004 1256
C.9.6 MySQL/InnoDB-4.0.19, May 4, 2004 1256
C.9.7 MySQL/InnoDB-4.0.18, February 13, 2004 1257
C.9.8 MySQL/InnoDB-5.0.0, December 24, 2003 1258
C.9.9 MySQL/InnoDB-4.0.17, December 17, 2003 ... 1258
C.9.10 MySQL/InnoDB-4.1.1, December 4, 2003 1259
C.9.11 MySQL/InnoDB-4.0.16, October 22, 2003. ... 1259
C.9.12 MySQL/InnoDB-3.23.58, September 15, 2003
.. 1259
C.9.13 MySQL/InnoDB-4.0.15, September 10, 2003. . 1260
C.9.14 MySQL/InnoDB-4.0.14, July 22, 2003 1260
C.9.15 MySQL/InnoDB-3.23.57, June 20, 2003...... 1262
C.9.16 MySQL/InnoDB-4.0.13, May 20, 2003 1262
C.9.17 MySQL/InnoDB-4.1.0, April 3, 2003......... 1263
C.9.18 MySQL/InnoDB-3.23.56, March 17, 2003 1263
C.9.19 MySQL/InnoDB-4.0.12, March 18, 2003 1263
C.9.20 MySQL/InnoDB-4.0.11, February 25, 2003 ... 1264
C.9.21 MySQL/InnoDB-4.0.10, February 4, 2003 1264

XXX

C.9.22 MySQL/InnoDB-3.23.55, January 24, 2003... 1264
C.9.23 MySQL/InnoDB-4.0.9, January 14, 2003.. ... 1265
C.9.24 MySQL/InnoDB-4.0.8, January 7, 2003...... 1265
C.9.25 MySQL/InnoDB-4.0.7, December 26, 2002 ... 1266
C.9.26 MySQL/InnoDB-4.0.6, December 19, 2002 ... 1266
C.9.27 MySQL/InnoDB-3.23.54, December 12, 2002
.. 1266
C.9.28 MySQL/InnoDB-4.0.5, November 18, 2002... 1267
C.9.29 MySQL/InnoDB-3.23.53, October 9, 2002. ... 1268

C.9.30 MySQL/InnoDB-4.0.4, October 2, 2002...... 1268
C.9.31 MySQL/InnoDB-4.0.3, August 28, 2002. 1269
C.9.32 MySQL/InnoDB-3.23.52, August 16, 2002 ... 1269
C.9.33 MySQL/InnoDB-4.0.2, July 10,2002 1271
C.9.34 MySQL/InnoDB-3.23.51, June 12, 2002...... 1271
C.9.35 MySQL/InnoDB-3.23.50, April 23, 2002 1271

C.9.36 MySQL/InnoDB-3.23.49, February 17, 2002.. 1272
C.9.37 MySQL/InnoDB-3.23.48, February 9, 2002... 1272
C.9.38 MySQL/InnoDB-3.23.47, December 28, 2001
.. 1273
C.9.39 MySQL/InnoDB-4.0.1, December 23, 2001 ... 1274
C.9.40 MySQL/InnoDB-3.23.46, November 30, 2001

C.9.42 MySQL/InnoDB-3.23.44, November 2, 2001 .. 1274
C.9.43 MySQL/InnoDB-3.23.43, October 4, 2001 1275
C.9.44 MySQL/InnoDB-3.23.42, September 9, 2001.. 1275
C.9.45 MySQL/InnoDB-3.23.41, August 13, 2001 ... 1275

C.9.46 MySQL/InnoDB-3.23.40, July 16, 2001 1276
C.9.47 MySQL/InnoDB-3.23.39, June 13, 2001 1276
C.9.48 MySQL/InnoDB-3.23.38, May 12, 2001 1276
Appendix D Porting to Other Systems..... 1277
D.1 Debugging a MySQL Server.......................... 1278
D.1.1 Compiling MySQL for Debugging 1278
D.1.2 Creating Trace Files......................... 1279
D.1.3 Debugging mysqld under gdb 1280
D.1.4 Using a Stack Trace......................... 1281

D.1.5 Using Log Files to Find Cause of Errors in mysqld
.. 1282

D.1.6 Making a Test Case If You Experience Table

Corruption . ..ot 1282
D.2 Debugging a MySQL Client 1283
D.3 The DBUG Package 1284
D.4 Comments about RTS Threads 1285
D.5 Differences Between Thread Packages 1287

XXX1

Appendix E Environment Variables........ 1288
Appendix F MySQL Regular Expressions .. 1289
Appendix G GNU General Public License.. 1293

Appendix H MySQL FOSS License Exception
...................................... 1299

SQL Command, Type, and Function Index .. 1301

Concept Index...............ciiiiiinn.. 1310

xxxii

Chapter 1: General Information 1

1 General Information

The MySQL ® software delivers a very fast, multi-threaded, multi-user, and robust SQL
(Structured Query Language) database server. MySQL Server is intended for mission-
critical, heavy-load production systems as well as for embedding into mass-deployed soft-
ware. MySQL is a registered trademark of MySQL AB.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an
Open Source/Free Software product under the terms of the GNU General Public License
(http://www.fsf.org/licenses/) or can purchase a standard commercial license from
MySQL AB. See Section 1.4 [Licensing and Support], page 16.

The MySQL Web site (http://www.mysql.com/) provides the latest information about the
MySQL software.

The following list describes some sections of particular interest in this manual:

e For information about the company behind the MySQL Database Server, see Section 1.3
[What is MySQL AB], page 12.

e For a discussion about the capabilities of the MySQL Database Server, see Section 1.2.2
[Features|, page 6.

e For installation instructions, see Chapter 2 [Installing], page 59.

e For tips on porting the MySQL Database Software to new architectures or operating
systems, see Appendix D [Porting], page 1277.

e For information about upgrading from a Version 4.0 release, see Section 2.5.2
[Upgrading-from-4.0], page 134.

e For information about upgrading from a Version 3.23 release, see Section 2.5.3
[Upgrading-from-3.23], page 138.

e For information about upgrading from a Version 3.22 release, see Section 2.5.4
[Upgrading-from-3.22|, page 142.

e For a tutorial introduction to the MySQL Database Server, see Chapter 3 [Tutorial],
page 182.

e For examples of SQL and benchmarking information, see the benchmarking directory
(‘sql-bench’ in the distribution).

e For a history of new features and bugfixes, see Appendix C [News]|, page 1106.

e For a list of currently known bugs and misfeatures, see Section 1.8.7 [Bugs|, page 53.
e For future plans, see Section 1.6 [TODO], page 26.

e For a list of all the contributors to this project, see Appendix B [Credits], page 1095.

Important:

Reports of errors (often called “bugs”), as well as questions and comments, should be
sent to the general MySQL mailing list. See Section 1.7.1.1 [Mailing-list], page 32. See
Section 1.7.1.3 [Bug reports], page 35.

The mysqlbug script should be used to generate bug reports on Unix. (Windows distri-
butions contain a file named ‘mysqlbug.txt’ in the base directory that can be used as a
template for a bug report.)

2 MySQL Technical Reference for Version 5.0.0-alpha

For source distributions, the mysqlbug script can be found in the ‘scripts’ directory. For
binary distributions, mysqlbug can be found in the ‘bin’ directory (‘/usr/bin’ for the
MySQL-server RPM package).

If you have found a sensitive security bug in MySQL Server, please let us know immediately
by sending an email message to security@mysql. com.

1.1 About This Manual

This is the Reference Manual for the MySQL Database System. It documents MySQL up to
Version 5.0.0-alpha, but is also applicable for older versions of the MySQL software (such as
3.23 or 4.0-production) because functional changes are indicated with reference to a version
number.

Because this manual serves as a reference, it does not provide general instruction on SQL
or relational database concepts. It also will not teach you how to use your operating system
or command-line interpreter.

The MySQL Database Software is under constant development, and the Reference Manual
is updated frequently as well. The most recent version of the manual is available online in
searchable form at http://dev.mysql.com/doc/. Other formats also are available, includ-
ing HTML, PDF, and Windows CHM versions.

The primary document is the Texinfo file. The HTML version is produced automatically
using a modified version of texi2html. The plain text and Info versions are produced
with makeinfo. The PostScript version is produced using texi2dvi and dvips. The PDF
version is produced with pdftex.

If you have any suggestions concerning additions or corrections to this manual, please send
them to the documentation team at docs@mysql.com.

This manual was initially written by David Axmark and Michael “Monty” Widenius. It
is now maintained by the MySQL Documentation Team, consisting of Arjen Lentz, Paul
DuBois, and Stefan Hinz. For the many other contributors, see Appendix B [Credits],
page 1095.

The copyright (2004) to this manual is owned by the Swedish company MySQL AB. See
Section 1.4.2 [Copyright|, page 17. MySQL and the MySQL logo are (registered) trademarks
of MySQL AB. Other trademarks and registered trademarks referred to in this manual are
the property of their respective owners, and are used for identification purposes only.

1.1.1 Conventions Used in This Manual

This manual uses certain typographical conventions:

constant Constant-width font is used for command names and options; SQL statements;
database, table, and column names; C and Perl code; and environment vari-
ables. Example: “To see how mysqladmin works, invoke it with the --help
option.”

constant italic
Italic constant-width font is used to indicate variable input for which you should
substitute a value of your own choosing.

Chapter 1: General Information 3

‘filename’
Constant-width font with surrounding quotes is used for filenames and path-
names. Example: “The distribution is installed under the ‘/usr/local/’ direc-
tory.”

‘c’ Constant-width font with surrounding quotes is also used to indicate character
sequences. Example: “To specify a wildcard, use the ‘%’ character.”

italic Italic font is used for emphasis, like this.

boldface = Boldface font is used in table headings and to convey especially strong emphasis.

When commands are shown that are meant to be executed from within a particular pro-
gram, the program is indicated by a prompt shown before the command. For example,
shell> indicates a command that you execute from your login shell, and mysql> indicates
a statement that you execute from the mysql client program:

shell> type a shell command here
mysql> type a mysql statement here

The “shell” is your command interpreter. On Unix, this is typically a program such as sh
or csh. On Windows, the equivalent program is command.com or cmd.exe, typically run in
a console window.

When you enter a command or statement shown in an example, do not type the prompt
shown in the example.

Database, table, and column names must often be substituted into statements. To indicate
that such substitution is necessary, this manual uses db_name, tbl_name, and col_name.
For example, you might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own
database, table, and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;
SQL keywords are not case sensitive and may be written in uppercase or lowercase. This
manual uses uppercase.
In syntax descriptions, square brackets (‘[’ and ‘]’) are used to indicate optional words or
clauses. For example, in the following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name
When a syntax element consists of a number of alternatives, the alternatives are separated by

vertical bars (‘|’). When one member from a set of choices may be chosen, the alternatives
are listed within square brackets (‘[’ and ‘1’):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)
When one member from a set of choices must be chosen, the alternatives are listed within
braces (‘{’ and ‘}’):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a
shorter version of more complex syntax. For example, INSERT ... SELECT is shorthand for
the form of INSERT statement that is followed by a SELECT statement.

4 MySQL Technical Reference for Version 5.0.0-alpha

An ellipsis can also indicate that the preceding syntax element of a statement may be
repeated. In the following example, multiple reset_option values may be given, with each
of those after the first preceded by commas:

RESET reset_option [,reset_option]

Commands for setting shell variables are shown using Bourne shell syntax. For example,
the sequence to set an environment variable and run a command looks like this in Bourne
shell syntax:

shell> VARNAME=value some_command

If you are using csh or tcsh, you must issue commands somewhat differently. You would
execute the sequence just shown like this:

shell> setenv VARNAME value
shell> some_command

1.2 Overview of the MySQL Database Management System

MySQL, the most popular Open Source SQL database management system, is developed,
distributed, and supported by MySQL AB. MySQL AB is a commercial company, founded
by the MySQL developers, that builds its business by providing services around the MySQL
database management system. See Section 1.3 [What is MySQL AB], page 12.

The MySQL Web site (http://www.mysql.com/) provides the latest information about
MySQL software and MySQL AB.

MySQL is a database management system.

A database is a structured collection of data. It may be anything from a
simple shopping list to a picture gallery or the vast amounts of information in
a corporate network. To add, access, and process data stored in a computer
database, you need a database management system such as MySQL Server.
Since computers are very good at handling large amounts of data, database
management systems play a central role in computing, as standalone utilities
or as parts of other applications.

MySQL is a relational database management system.

A relational database stores data in separate tables rather than putting all the
data in one big storeroom. This adds speed and flexibility. The SQL part of
“MySQL” stands for “Structured Query Language.” SQL is the most common
standardized language used to access databases and is defined by the ANSI/ISO
SQL Standard. The SQL standard has been evolving since 1986 and several
versions exist. In this manual, “SQL-92” refers to the standard released in 1992,
“SQL:1999” refers to the standard released in 1999, and “SQL:2003” refers to
the current version of the standard. We use the phrase “the SQL standard” to
mean the current version of the SQL Standard at any time.

MySQL software is Open Source.
Open Source means that it is possible for anyone to use and modify the soft-
ware. Anybody can download the MySQL software from the Internet and use
it without paying anything. If you wish, you may study the source code and
change it to suit your needs. The MySQL software uses the GPL (GNU General

Chapter 1: General Information 5

Public License), http://www.fsf.org/licenses/, to define what you may and
may not do with the software in different situations. If you feel uncomfortable
with the GPL or need to embed MySQL code into a commercial application,
you can buy a commercially licensed version from us. See Section 1.4.3 [MySQL
licenses], page 17.

The MySQL Database Server is very fast, reliable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server also
has a practical set of features developed in close cooperation with our users.
You can find a performance comparison of MySQL Server with other database
managers on our benchmark page. See Section 7.1.4 [MySQL Benchmarks],
page 416.

MySQL Server was originally developed to handle large databases much faster
than existing solutions and has been successfully used in highly demanding pro-
duction environments for several years. Although under constant development,
MySQL Server today offers a rich and useful set of functions. Its connectivity,
speed, and security make MySQL Server highly suited for accessing databases
on the Internet.

MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client /server system that consists of a multi-
threaded SQL server that supports different backends, several different client
programs and libraries, administrative tools, and a wide range of application
programming interfaces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that
you can link into your application to get a smaller, faster, easier-to-manage
product.

A large amount of contributed MySQL software is available.
It is very likely that you will find that your favorite application or language
already supports the MySQL Database Server.

The official way to pronounce “MySQL” is “My Ess Que ElI” (not “my sequel”), but we
don’t mind if you pronounce it as “my sequel” or in some other localized way.

1.2.1 History of MySQL

We started out with the intention of using mSQL to connect to our tables using our own fast
low-level (ISAM) routines. However, after some testing, we came to the conclusion that
mSQL was not fast enough or flexible enough for our needs. This resulted in a new SQL
interface to our database but with almost the same API interface as mSQL. This API was
designed to allow third-party code that was written for use with mSQL to be ported easily
for use with MySQL.

The derivation of the name MySQL is not clear. Our base directory and a large number of
our libraries and tools have had the prefix “my” for well over 10 years. However, co-founder
Monty Widenius’s daughter is also named My. Which of the two gave its name to MySQL
is still a mystery, even for us.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen by the founders
of MySQL AB from a huge list of names suggested by users in our “Name the Dolphin”

MySQL Technical Reference for Version 5.0.0-alpha

contest. The winning name was submitted by Ambrose Twebaze, an Open Source software
developer from Swaziland, Africa. According to Ambrose, the name Sakila has its roots
in SiSwati, the local language of Swaziland. Sakila is also the name of a town in Arusha,
Tanzania, near Ambrose’s country of origin, Uganda.

1.2.2 The Main Features of MySQL

The following list describes some of the important characteristics of the MySQL Database
Software. See also Section 1.5 [Roadmap], page 21 for more information about current and
upcoming features.

Internals and Portability

Column Types

Written in C and C++.

Tested with a broad range of different compilers.

Works on many different platforms. See Section 2.1.1 [Which OS], page 60.
Uses GNU Automake, Autoconf, and Libtool for portability.

APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are avail-
able. See Chapter 21 [Clients], page 915.

Fully multi-threaded using kernel threads. It can easily use multiple CPUs
if they are available.

Provides transactional and non-transactional storage engines.

Uses very fast B-tree disk tables (MyISAM) with index compression.
Relatively easy to add another storage engine. This is useful if you want
to add an SQL interface to an in-house database.

A very fast thread-based memory allocation system.

Very fast joins using an optimized one-sweep multi-join.

In-memory hash tables, which are used as temporary tables.

SQL functions are implemented using a highly optimized class library and

should be as fast as possible. Usually there is no memory allocation at all
after query initialization.

The MySQL code is tested with Purify (a commercial mem-
ory leakage detector) as well as with Valgrind, a GPL tool
(http://developer.kde.org/ sewardj/).

The server is available as a separate program for use in a client/server net-
worked environment. It is also available as a library that can be embedded
(linked) into standalone applications. Such applications can be used in
isolation or in environments where no network is available.

Many column types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes
long, FLOAT, DOUBLE, CHAR, VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME,
TIMESTAMP, YEAR, SET, ENUM, and OpenGIS spatial types. See Chapter 12
[Column types], page 554.

Fixed-length and variable-length records.

Chapter 1: General Information 7

Statements and Functions

Security

e Full operator and function support in the SELECT and WHERE clauses of

queries. For example:

mysql> SELECT CONCAT(first_name, ’ ’, last_name)
-> FROM citizen
-> WHERE income/dependents > 10000 AND age > 30;

Full support for SQL GROUP BY and ORDER BY clauses. Support for group
functions (COUNT(), COUNT(DISTINCT ...), AVG(), STD(), SUM(), MAX(),
MIN(), and GROUP_CONCATQ)).

Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard
SQL and ODBC syntax.

Support for aliases on tables and columns as required by standard SQL.

DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were
changed (affected). It is possible to return the number of rows matched
instead by setting a flag when connecting to the server.

The MySQL-specific SHOW command can be used to retrieve information
about databases, tables, and indexes. The EXPLAIN command can be used
to determine how the optimizer resolves a query.

Function names do not clash with table or column names. For example,
ABS is a valid column name. The only restriction is that for a function call,
no spaces are allowed between the function name and the ‘C that follows
it. See Section 10.6 [Reserved words|, page 523.

You can mix tables from different databases in the same query (as of
MySQL 3.22).

A privilege and password system that is very flexible and secure, and that
allows host-based verification. Passwords are secure because all password
traffic is encrypted when you connect to a server.

Scalability and Limits

Connectivity

e Handles large databases. We use MySQL Server with databases that con-

tain 50 million records. We also know of users who use MySQL Server with
60,000 tables and about 5,000,000,000 rows.

Up to 64 indexes per table are allowed (32 before MySQL 4.1.2). Each
index may consist of 1 to 16 columns or parts of columns. The maximum
index width is 1000 bytes (500 before MySQL 4.1.2). An index may use a
prefix of a column for CHAR, VARCHAR, BLOB, or TEXT column types.

Clients can connect to the MySQL server using TCP/IP sockets on any
platform. On Windows systems in the NT family (NT, 2000, or XP), clients
can connect using named pipes. On Unix systems, clients can connect using
Unix domain socket files.

The Connector/ODBC interface provides MySQL support for client pro-
grams that use ODBC (Open Database Connectivity) connections. For

8 MySQL Technical Reference for Version 5.0.0-alpha

example, you can use MS Access to connect to your MySQL server. Clients
can be run on Windows or Unix. Connector/ODBC source is available. All
ODBC 2.5 functions are supported, as are many others. See Section 21.3
[ODBC], page 1015.

e The Connector/JDBC interface provides MySQL support for Java client
programs that use JDBC connections. Clients can be run on Windows
or Unix. Connector/JDBC source is available. See Section 21.4 [Java],
page 1025.

Localization
e The server can provide error messages to clients in many languages. See
Section 5.8.2 [Languages], page 356.

e Full support for several different character sets, including latinl (ISO-
8859-1), german, bigh, ujis, and more. For example, the Scandinavian
characters ‘a’, ‘a4’ and ‘¢’ are allowed in table and column names. Unicode

support is available as of MySQL 4.1.

e All data is saved in the chosen character set. All comparisons for normal
string columns are case-insensitive.

e Sorting is done according to the chosen character set (using Swedish col-
lation by default). It is possible to change this when the MySQL server
is started. To see an example of very advanced sorting, look at the Czech
sorting code. MySQL Server supports many different character sets that
can be specified at compile time and runtime.

Clients and Tools
e The MySQL server has built-in support for SQL statements to check, opti-
mize, and repair tables. These statements are available from the command
line through the mysqlcheck client. MySQL also includes myisamchk, a
very fast command-line utility for performing these operations on MyISAM
tables. See Chapter 5 [MySQL Database Administration], page 229.

e All MySQL programs can be invoked with the --help or -7 options to
obtain online assistance.

1.2.3 MySQL Stability

This section addresses the questions, “How stable is MySQL Server?” and, “Can I depend
on MySQL Server in this project?” We will try to clarify these issues and answer some
important questions that concern many potential users. The information in this section is
based on data gathered from the mailing lists, which are very active in identifying problems
as well as reporting types of use.

The original code stems back to the early 1980s. It provides a stable code base, and the
ISAM table format used by the original storage engine remains backward-compatible. At
TcX, the predecessor of MySQL AB, MySQL code has worked in projects since mid-1996,
without any problems. When the MySQL Database Software initially was released to a
wider public, our new users quickly found some pieces of untested code. Each new release
since then has had fewer portability problems, even though each new release has also had
many new features.

Chapter 1: General Information 9

Each release of the MySQL Server has been usable. Problems have occurred only when
users try code from the “gray zones.” Naturally, new users don’t know what the gray zones
are; this section therefore attempts to document those areas that are currently known.
The descriptions mostly deal with Version 3.23 and 4.0 of MySQL Server. All known and
reported bugs are fixed in the latest version, with the exception of those listed in the bugs
section, which are design-related. See Section 1.8.7 [Bugs], page 53.

The MySQL Server design is multi-layered with independent modules. Some of the newer
modules are listed here with an indication of how well-tested each of them is:

Replication (Gamma)
Large groups of servers using replication are in production use, with good re-
sults. Work on enhanced replication features is continuing in MySQL 5.x.

InnoDB tables (Stable)
The InnoDB transactional storage engine has been declared stable in the MySQL
3.23 tree, starting from version 3.23.49. InnoDB is being used in large, heavy-
load production systems.

BDB tables (Gamma)
The Berkeley DB code is very stable, but we are still improving the BDB trans-
actional storage engine interface in MySQL Server, so it will take some time
before this is as well tested as the other table types.

Full-text searches (Beta)
Full-text searching works but is not yet widely used. Important enhancements
have been implemented in MySQL 4.0.

Connector/0DBC 3.51 (Stable)
Connector/0DBC 3.51 uses ODBC SDK 3.51 and is in wide production use.
Some issues brought up appear to be application-related and independent of
the ODBC driver or underlying database server.

Automatic recovery of MyISAM tables (Gamma)
This status applies only to the new code in the MyISAM storage engine that
checks when opening a table whether it was closed properly and executes an
automatic check or repair of the table if it wasn’t.

1.2.4 How Big MySQL Tables Can Be

MySQL 3.22 had a 4GB (4 gigabyte) limit on table size. With the MyISAM storage engine in
MySQL 3.23, the maximum table size was increased to 8 million terabytes (2 ~ 63 bytes).
With this larger allowed table size, the maximum effective table size for MySQL databases
now usually is determined by operating system constraints on file sizes, not by MySQL
internal limits.

The InnoDB storage engine maintains InnoDB tables within a tablespace that can be cre-
ated from several files. This allows a table to exceed the maximum individual file size.
The tablespace can include raw disk partitions, which allows extremely large tables. The
maximum tablespace size is 64TB.

The following table lists some examples of operating system file-size limits:

10 MySQL Technical Reference for Version 5.0.0-alpha

Operating System File-size Limit

Linux-Intel 32-bit 2GB, much more when using LF'S
Linux-Alpha 8TB (7)

Solaris 2.5.1 2GB (4GB possible with patch)
Solaris 2.6 4GB (can be changed with flag)
Solaris 2.7 Intel 4GB

Solaris 2.7 UltraSPARC 512GB
NetWare w/NSS filesystem 8TB

On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the Large File
Support (LFS) patch for the ext2 filesystem. On Linux 2.4, patches also exist for ReiserF'S
to get support for big files. Most current Linux distributions are based on kernel 2.4 and
already include all the required LFS patches. However, the maximum available file size still
depends on several factors, one of them being the filesystem used to store MySQL tables.

For a detailed overview about LFS in Linux, have a look at Andreas Jaeger’s Large File
Support in Linux page at http://www.suse.de/"aj/linux_1fs.html.

By default, MySQL creates MyISAM tables with an internal structure that allows a maximum
size of about 4GB. You can check the maximum table size for a table with the SHOW TABLE
STATUS statement or with myisamchk -dv tbl_name. See Section 14.5.3 [SHOW|, page 729.
If you need a MyISAM table that will be larger than 4GB in size (and your operating system
supports large files), the CREATE TABLE statement allows AVG_ROW_LENGTH and MAX_ROWS
options. See Section 14.2.5 [CREATE TABLE], page 697. You can also change these options
with ALTER TABLE after the table has been created, to increase the table’s maximum allow-
able size. See Section 14.2.2 [ALTER TABLE], page 690.

Other ways to work around file-size limits for MyISAM tables are as follows:

e If your large table is read-only, you can use myisampack to compress it. myisampack
usually compresses a table by at least 50%, so you can have, in effect, much bigger
tables. myisampack also can merge multiple tables into a single table. See Section 8.2
[myisampack]|, page 469.

e Another way to get around the operating system file limit for MyISAM data files is by
using the RAID options. See Section 14.2.5 [CREATE TABLE], page 697.

e MySQL includes a MERGE library that allows you to handle a collection of MyISAM tables
that have identical structure as a single MERGE table. See Section 15.2 [MERGE tables],
page 775.

1.2.5 Year 2000 Compliance

The MySQL Server itself has no problems with Year 2000 (Y2K) compliance:

e MySQL Server uses Unix time functions that handle dates into the year 2037 for
TIMESTAMP values. For DATE and DATETIME values, dates through the year 9999 are
accepted.

e All MySQL date functions are implemented in one source file, ‘sql/time.cc’, and are
coded very carefully to be year 2000-safe.

e In MySQL 3.22 and later, the YEAR column type can store years 0 and 1901 to 2155 in
one byte and display them using two or four digits. All two-digit years are considered

Chapter 1: General Information 11

to be in the range 1970 to 2069, which means that if you store 01 in a YEAR column,
MySQL Server treats it as 2001.

The following simple demonstration illustrates that MySQL Server has no problems with
DATE or DATETIME values through the year 9999, and no problems with TIMESTAMP values
until after the year 2030:

mysql> DROP TABLE IF EXISTS y2k;
Query OK, O rows affected (0.01 sec)

mysql> CREATE TABLE y2k (date DATE,

-> date_time DATETIME,

-> time_stamp TIMESTAMP);
Query OK, O rows affected (0.01 sec)

mysql> INSERT INTO y2k VALUES
-> (°1998-12-317,°1998-12-31 23:59:59’,19981231235959),
-> (71999-01-01",°1999-01-01 00:00:00’,19990101000000) ,
-> (71999-09-09°,°1999-09-09 23:59:59’,19990909235959) ,
-> (?2000-01-01",°2000-01-01 00:00:00’,20000101000000) ,
-> (°2000-02-28",°2000-02-28 00:00:00’,20000228000000) ,
-> (’2000-02-29’,°2000-02-29 00:00:00’,20000229000000) ,
-> (?2000-03-01",°2000-03-01 00:00:00’,20000301000000) ,
-> (?2000-12-31",°2000-12-31 23:59:59’,20001231235959),
-> (’2001-01-01",°2001-01-01 00:00:00’,20010101000000) ,
-> (°2004-12-31’,°2004-12-31 23:59:59’,20041231235959),
-> (’2005-01-01",°2005-01-01 00:00:00’,20050101000000) ,
-> (’2030-01-01",°2030-01-01 00:00:00’,20300101000000) ,
-> (’2040-01-01",°2040-01-01 00:00:00’,20400101000000) ,
-> (’9999-12-317,°9999-12-31 23:59:59’,99991231235959) ;

Query OK, 14 rows affected (0.01 sec)

Records: 14 Duplicates: O Warnings: 2

mysql> SELECT * FROM y2k;

e e e +
| date | date_time | time_stamp

e T . +
1998-12-31	1998-12-31 23:59:59	19981231235959
1999-01-01	1999-01-01 00:00:00	19990101000000
1999-09-09	1999-09-09 23:59:59	19990909235959
2000-01-01	2000-01-01 00:00:00	20000101000000
2000-02-28	2000-02-28 00:00:00	20000228000000
2000-02-29	2000-02-29 00:00:00	20000229000000
2000-03-01	2000-03-01 00:00:00	20000301000000
2000-12-31	2000-12-31 23:59:59	20001231235959
2001-01-01	2001-01-01 00:00:00	20010101000000
2004-12-31	2004-12-31 23:59:59	20041231235959
2005-01-01	2005-01-01 00:00:00	20050101000000

12 MySQL Technical Reference for Version 5.0.0-alpha

2030-01-01	2030-01-01 00:00:00	20300101000000
2040-01-01	2040-01-01 00:00:00	00000000000000
9999-12-31	9999-12-31 23:59:59	00000000000000
Fomm Fm Fom +

14 rows in set (0.00 sec)
The final two TIMESTAMP column values are zero because the year values (2040, 9999)
exceed the TIMESTAMP maximum. The TIMESTAMP data type, which is used to store the
current time, supports values that range from 19700101000000 to 20300101000000 on 32-
bit machines (signed value). On 64-bit machines, TIMESTAMP handles values up to 2106
(unsigned value).

Although MySQL Server itself is Y2K-safe, you may run into problems if you use it with
applications that are not Y2K-safe. For example, many old applications store or manipulate
years using two-digit values (which are ambiguous) rather than four-digit values. This
problem may be compounded by applications that use values such as 00 or 99 as “missing”
value indicators. Unfortunately, these problems may be difficult to fix because different
applications may be written by different programmers, each of whom may use a different
set of conventions and date-handling functions.

Thus, even though MySQL Server has no Y2K problems, it is the application’s responsibility
to provide unambiguous input. See Section 12.3.4 [Y2K issues], page 571 for MySQL Server’s
rules for dealing with ambiguous date input data that contains two-digit year values.

1.3 Overview of MySQL AB

MySQL AB is the company of the MySQL founders and main developers. MySQL AB was
originally established in Sweden by David Axmark, Allan Larsson, and Michael “Monty”
Widenius.

The developers of the MySQL server are all employed by the company. We are a virtual or-
ganization with people in a dozen countries around the world. We communicate extensively
over the Internet every day with one another and with our users, supporters, and partners.

We are dedicated to developing the MySQL database software and promoting it to new
users. MySQL AB owns the copyright to the MySQL source code, the MySQL logo and
(registered) trademark, and this manual. See Section 1.2 [What-is], page 4.

The MySQL core values show our dedication to MySQL and Open Source.
These core values direct how MySQL AB works with the MySQL server software:
e To be the best and the most widely used database in the world
e To be available and affordable by all
e To be easy to use
e To be continuously improved while remaining fast and safe
e To be fun to use and improve

e To be free from bugs

These are the core values of the company MySQL AB and its employees:
e We subscribe to the Open Source philosophy and support the Open Source community

e We aim to be good citizens

Chapter 1: General Information 13

We prefer partners that share our values and mindset

e We answer email and provide support

e We are a virtual company, networking with others

e We work against software patents
The MySQL Web site (http://www.mysql.com/) provides the latest information about
MySQL and MySQL AB.
By the way, the “AB” part of the company name is the acronym for the Swedish “ak-
tiebolag,” or “stock company.” It translates to “MySQL, Inc.” In fact, MySQL, Inc. and

MySQL GmbH are examples of MySQL AB subsidiaries. They are located in the US and
Germany, respectively.

1.3.1 The Business Model and Services of MySQL AB

One of the most common questions we encounter is, “How can you make a living from
)
something you give away for free?” This is how:

e MySQL AB makes money on support, services, commercial licenses, and royalties.

e We use these revenues to fund product development and to expand the MySQL busi-
ness.

The company has been profitable since its inception. In October 2001, we accepted ven-
ture financing from leading Scandinavian investors and a handful of business angels. This
investment is used to solidify our business model and build a basis for sustainable growth.

1.3.1.1 Support

MySQL AB is run and owned by the founders and main developers of the MySQL database.
The developers are committed to providing support to customers and other users in order
to stay in touch with their needs and problems. All our support is provided by qualified
developers. Really tricky questions are answered by Michael “Monty” Widenius, principal
author of the MySQL Server.

Paying customers receive high-quality support directly from MySQL AB. MySQL AB also
provides the MySQL mailing lists as a community resource where anyone may ask questions.

For more information and ordering support at various levels, see Section 1.4 [Licensing and
Support], page 16.

1.3.1.2 Training and Certification

MySQL AB delivers MySQL and related training worldwide. We offer both open courses
and in-house courses tailored to the specific needs of your company. MySQL Training is
also available through our partners, the Authorized MySQL Training Centers.

Our training material uses the same sample databases used in our documentation and
our sample applications, and is always updated to reflect the latest MySQL version. Our
trainers are backed by the development team to guarantee the quality of the training and
the continuous development of the course material. This also ensures that no questions
raised during the courses remain unanswered.

14 MySQL Technical Reference for Version 5.0.0-alpha

Attending our training courses will enable you to achieve your MySQL application goals.
You will also:

e Save time

e Improve the performance of your applications

e Reduce or eliminate the need for additional hardware, decreasing cost
e Enhance security.

e Increase customer and co-worker satisfaction

e Prepare yourself for MySQL Certification

If you are interested in our training as a potential participant or as a training partner,

please visit the training section at http://www.mysql.com/training/, or send email to
training@mysql. com.

For details about the MySQL Certification Program, please see http://www.mysql.com/certification/.|]

1.3.1.3 Consulting

MySQL AB and its Authorized Partners offer consulting services to users of MySQL Server
and to those who embed MySQL Server in their own software, all over the world.

Our consultants can help you design and tune your databases, construct efficient queries,
tune your platform for optimal performance, resolve migration issues, set up replication,
build robust transactional applications, and more. We also help customers embed MySQL
Server in their products and applications for large-scale deployment.

Our consultants work in close collaboration with our development team, which ensures the
technical quality of our professional services. Consulting assignments range from two-day
power-start sessions to projects that span weeks and months. Our expertise covers not only
MySQL Server, it also extends into programming and scripting languages such as PHP,
Perl, and more.

If you are interested in our consulting services or want to become a consulting partner,
please visit the consulting section of our Web site at http://www.mysql.com/consulting/
or contact our consulting staff at consulting@mysql.com.

1.3.1.4 Commercial Licenses

The MySQL database is released under the GNU General Public License (GPL). This means
that the MySQL software can be used free of charge under the GPL. If you do not want
to be bound by the GPL terms (such as the requirement that your application must also
be GPL), you may purchase a commercial license for the same product from MySQL AB;
see https://order.mysql.com/. Since MySQL AB owns the copyright to the MySQL
source code, we are able to employ Dual Licensing, which means that the same product is
available under GPL and under a commercial license. This does not in any way affect the
Open Source commitment of MySQL AB. For details about when a commercial license is
required, please see Section 1.4.3 [MySQL licenses], page 17.

We also sell commercial licenses of third-party Open Source GPL software that adds value
to MySQL Server. A good example is the InnoDB transactional storage engine that offers
ACID support, row-level locking, crash recovery, multi-versioning, foreign key support, and
more. See Chapter 16 [InnoDB|, page 787.

Chapter 1: General Information 15

1.3.1.5 Partnering

MySQL AB has a worldwide partner program that covers training courses, consulting and
support, publications, plus reselling and distributing MySQL and related products. MySQL
AB Partners get visibility on the http://www.mysql.com/ Web site and the right to use
special versions of the MySQL (registered) trademarks to identify their products and pro-
mote their business.

If you are interested in becoming a MySQL AB Partner, please email partner@mysql . com.

The word MySQL and the MySQL dolphin logo are (registered) trademarks of MySQL
AB. See Section 1.4.4 [MySQL AB Logos and Trademarks|, page 20. These trademarks
represent a significant value that the MySQL founders have built over the years.

The MySQL Web site (http://www.mysql.com/) is popular among developers and users. In
December 2003, we served 16 million page views. Our visitors represent a group that makes
purchase decisions and recommendations for both software and hardware. Twelve percent
of our visitors authorize purchase decisions, and only nine percent have no involvement at
all in purchase decisions. More than 65% have made one or more online business purchases
within the last half-year, and 70% plan to make one in the next few months.

1.3.2 Contact Information

The MySQL Web site (http://www.mysql.com/) provides the latest information about

MySQL and MySQL AB.

For press services and inquiries not covered in our news releases (http://www.mysql.com/news-and-events
please send email to press@mysql.com.

If you have a support contract with MySQL AB, you will get timely, precise answers to
your technical questions about the MySQL software. For more information, see Section 1.4.1
[Support], page 16. On our Web site, see http://www.mysql.com/support/, or send email
to sales@mysql.com.

For information about MySQL training, please visit the training section at
http://www.mysql.com/training/, or send email to training@mysql.com. See
Section 1.3.1.2 [Business Services Training], page 13.

For information on the MySQL Certification Program, please see http://www.mysql.com/certification/
See Section 1.3.1.2 [Business Services Training], page 13.

If you're interested in consulting, please visit the consulting section of our Web site at
http://www.mysql.com/consulting/, or send email to consulting@mysql.com. See Sec-
tion 1.3.1.3 [Business Services Consulting], page 14.

Commercial licenses may be purchased online at https://order.mysql.com/. There you
will also find information on how to fax your purchase order to MySQL AB. More infor-
mation about licensing can be found at http://www.mysql.com/products/licensing/.
If you have questions regarding licensing or you want a quote for high-volume licensing,
please fill in the contact form on our Web site (http://www.mysql.com/), or send email to
licensing@mysql.com (for licensing questions) or to sales@mysql. com (for sales inquiries).
See Section 1.4.3 [MySQL licenses], page 17.

If you represent a business that is interested in partnering with MySQL AB, please send
email to partner@mysql.com. See Section 1.3.1.5 [Business Services Partnering], page 15.

16 MySQL Technical Reference for Version 5.0.0-alpha

For more information on the MySQL trademark policy, refer to http://www.mysql.com/company/trademar
or send email to trademark@mysql.com. See Section 1.4.4 [MySQL AB Logos and
Trademarks|, page 20.

If you are interested in any of the MySQL AB jobs listed in our jobs section
(http://www.mysql.com/company/jobs/), please send email to jobs@mysql.com. Please
do not send your CV as an attachment, but rather as plain text at the end of your email
message.

For general discussion among our many users, please direct your attention to the appropriate
mailing list. See Section 1.7.1 [Questions|, page 32.

Reports of errors (often called “bugs”), as well as questions and comments, should be sent
to the general MySQL mailing list. See Section 1.7.1.1 [Mailing-list], page 32. If you have
found a sensitive security bug in MySQL Server, please let us know immediately by sending
email to security@mysql.com. See Section 1.7.1.3 [Bug reports|, page 35.

If you have benchmark results that we can publish, please contact us via email at
benchmarks@mysql. com.

If you have suggestions concerning additions or corrections to this manual, please send them
to the documentation team via email at docs@mysql. com.

For questions or comments about the workings or content of the MySQL Web site
(http://www.mysql.com/), please send email to webmaster@mysql.com.

MySQL AB has a privacy policy, which can be read at http://www.mysql.com/company/privacy.html.|]
For any queries regarding this policy, please send email to privacy@mysql.com.

For all other inquiries, please send email to info@mysql . com.
1.4 MySQL Support and Licensing

This section describes MySQL support and licensing arrangements.

1.4.1 Support Offered by MySQL AB

Technical support from MySQL AB means individualized answers to your unique problems
direct from the software engineers who code the MySQL database engine.

We try to take a broad and inclusive view of technical support. Almost any problem involv-
ing MySQL software is important to us if it’s important to you. Typically customers seek
help on how to get different commands and utilities to work, remove performance bottle-
necks, restore crashed systems, understand the impact of operating system or networking
issues on MySQL, set up best practices for backup and recovery, utilize APIs, and so on.
Our support covers only the MySQL server and our own utilities, not third-party products
that access the MySQL server, although we try to help with these where we can.

Detailed information about our various support options is given at http://www.mysql . com/support/,}j
where support contracts can also be ordered online. To contact our sales staff, send email
to sales@mysql. com.

Technical support is like life insurance. You can live happily without it for years. However,
when your hour arrives, it becomes critically important, but it’s too late to buy it. If you
use MySQL Server for important applications and encounter sudden difficulties, it may be

Chapter 1: General Information 17

too time-consuming to figure out all the answers yourself. You may need immediate access
to the most experienced MySQL troubleshooters available, those employed by MySQL AB.

1.4.2 Copyrights and Licenses Used by MySQL

MySQL AB owns the copyright to the MySQL source code, the MySQL logos and (regis-
tered) trademarks, and this manual. See Section 1.3 [What is MySQL AB], page 12. Several
different licenses are relevant to the MySQL distribution:

1. All the MySQL-specific source in the server, the mysqlclient library and the client,
as well as the GNU readline library, are covered by the GNU General Public License.
See Appendix G [GPL license], page 1293. The text of this license can be found as the
file ‘COPYING’ in MySQL distributions.

2. The GNU getopt library is covered by the GNU Lesser General Public License. See
http://wuw.fsf.org/licenses/.
3. Some parts of the source (the regexp library) are covered by a Berkeley-style copyright.

4. Older versions of MySQL (3.22 and earlier) are subject to a stricter license
(http://www.mysql.com/products/licensing/mypl.html). See the documentation
of the specific version for information.

5. The MySQL Reference Manual is not distributed under a GPL-style license. Use of
the manual is subject to the following terms:

e Conversion to other formats is allowed, but the actual content may not be altered
or edited in any way.

e You may create a printed copy for your own personal use.

e For all other uses, such as selling printed copies or using (parts of) the manual in
another publication, prior written agreement from MySQL AB is required.

Please send an email message to docs@mysql.com for more information or if you are
interested in doing a translation.

For information about how the MySQL licenses work in practice, please refer to Section 1.4.3
[MySQL licenses], page 17 and Section 1.4.4 [MySQL AB Logos and Trademarks|, page 20.

1.4.3 MySQL Licenses

The MySQL software is released under the GNU General Public License (GPL),
which is probably the best known Open Source license. The formal terms of
the GPL license can be found at http://www.fsf.org/licenses/. See also
http://wuw.fsf.org/licenses/gpl-faq.html and http://www.gnu.org/philosophy/enforcing-gpl..

Our GPL licensing is supported by an optional license exception that en-
ables many Free/Libre and Open Source Software (“FLOSS”) applica-
tions to include the GPL-licensed MySQL client libraries despite the fact
that not all FLOSS licenses are compatible with the GPL. For details, see
http://www.mysql.com/products/licensing/foss-exception.html.

Because the MySQL software is released under the GPL, it may often be used for free,
but for certain uses you may want or need to buy commercial licenses from MySQL AB

18 MySQL Technical Reference for Version 5.0.0-alpha

at https://order.mysql.com/. See http://www.mysql.com/products/licensing/ for
more information.

Older versions of MySQL (3.22 and earlier) are subject to a stricter license
(http://www.mysql.com/products/licensing/mypl.html). See the documentation of
the specific version for information.

Please note that the use of the MySQL software under commercial license, GPL, or the old
MySQL license does not automatically give you the right to use MySQL AB (registered)
trademarks. See Section 1.4.4 [MySQL AB Logos and Trademarks|, page 20.

1.4.3.1 Using the MySQL Software Under a Commercial License

The GPL license is contagious in the sense that when a program is linked to a GPL program,
all the source code for all the parts of the resulting product must also be released under the
GPL. If you do not follow this GPL requirement, you break the license terms and forfeit
your right to use the GPL program altogether. You also risk damages.

You need a commercial license under these conditions:

e When you link a program with any GPL code from the MySQL software and don’t
want the resulting product to be licensed under GPL, perhaps because you want to
build a commercial product or keep the added non-GPL code closed source for other
reasons. When purchasing commercial licenses, you are not using the MySQL software
under GPL even though it’s the same code.

e When you distribute a non-GPL application that works only with the MySQL software
and ship it with the MySQL software. This type of solution is considered to be linking
even if it’s done over a network.

e When you distribute copies of the MySQL software without providing the source code
as required under the GPL license.

e When you want to support the further development of the MySQL database even if you
don’t formally need a commercial license. Purchasing support directly from MySQL
AB is another good way of contributing to the development of the MySQL software,
with immediate advantages for you. See Section 1.4.1 [Support], page 16.

Our GPL licensing is supported by an optional license exception that en-
ables many Free/Libre and Open Source Software (“FLOSS”) applica-
tions to include the GPL-licensed MySQL client libraries despite the fact
that not all FLOSS licenses are compatible with the GPL. For details, see
http://www.mysql.com/products/licensing/foss-exception.html.

If you require a commercial license, you will need one for each installation of the MySQL
software. This covers any number of CPUs on a machine, and there is no artificial limit on
the number of clients that connect to the server in any way.

For commercial licenses, please visit our Web site at http://www.mysql.com/products/licensing/ |}
For support contracts, see http://www.mysql.com/support/. If you have special needs,
please contact our sales staff via email at sales@mysql . com.

Chapter 1: General Information 19

1.4.3.2 Using the MySQL Software for Free Under GPL

You can use the MySQL software for free under the GPL if you adhere to the
conditions of the GPL. For additional details about the GPL, including answers
to common questions, see the generic FAQ from the Free Software Foundation at
http://www.fsf.org/licenses/gpl-faq.html.

Our GPL licensing is supported by an optional license exception that en-
ables many Free/Libre and Open Source Software (“FLOSS”) applica-
tions to include the GPL-licensed MySQL client libraries despite the fact
that not all FLOSS licenses are compatible with the GPL. For details, see
http://www.mysql.com/products/licensing/foss-exception.html.

Common uses of the GPL include:

e When you distribute both your own application and the MySQL source code under the
GPL with your product.

e When you distribute the MySQL source code bundled with other programs that are
not linked to or dependent on the MySQL system for their functionality even if you sell
the distribution commercially. This is called “mere aggregation” in the GPL license.

e When you are not distributing any part of the MySQL system, you can use it for free.

e When you are an Internet Service Provider (ISP), offering Web hosting with MySQL
servers for your customers. We encourage people to use ISPs that have MySQL support,
because doing so will give them the confidence that their ISP will, in fact, have the
resources to solve any problems they may experience with the MySQL installation.
Even if an ISP does not have a commercial license for MySQL Server, their customers
should at least be given read access to the source of the MySQL installation so that
the customers can verify that it is correctly patched.

e When you use the MySQL database software in conjunction with a Web server, you
do not need a commercial license (so long as it is not a product you distribute). This
is true even if you run a commercial Web server that uses MySQL Server, because
you are not distributing any part of the MySQL system. However, in this case we
would like you to purchase MySQL support because the MySQL software is helping
your enterprise.

If your use of MySQL database software does not require a commercial license, we encourage
you to purchase support from MySQL AB anyway. This way you contribute toward MySQL
development and also gain immediate advantages for yourself. See Section 1.4.1 [Support],
page 16.

If you use the MySQL database software in a commercial context such that you profit by its
use, we ask that you further the development of the MySQL software by purchasing some
level of support. We feel that if the MySQL database helps your business, it is reasonable
to ask that you help MySQL AB. (Otherwise, if you ask us support questions, you are not
only using for free something into which we’ve put a lot a work, you're asking us to provide
free support, too.)

20 MySQL Technical Reference for Version 5.0.0-alpha

1.4.4 MySQL AB Logos and Trademarks

Many users of the MySQL database want to display the MySQL AB dolphin logo on
their Web sites, books, or boxed products. We welcome and encourage this, although
it should be noted that the word MySQL and the MySQL dolphin logo are (registered)
trademarks of MySQL AB and may only be used as stated in our trademark policy at
http://www.mysql.com/company/trademark.html.

1.4.4.1 The Original MySQL Logo

The MySQL dolphin logo was designed by the Finnish advertising agency Priority in 2001.
The dolphin was chosen as a suitable symbol for the MySQL database management system,
which is like a smart, fast, and lean animal, effortlessly navigating oceans of data. We also
happen to like dolphins.

The original MySQL logo may only be used by representatives of MySQL AB and by those
having a written agreement allowing them to do so.

1.4.4.2 MySQL Logos That May Be Used Without Written
Permission

We have designed a set of special Conditional Use logos that may be downloaded from
our Web site at http://www.mysql.com/press/logos.html and used on third-party Web
sites without written permission from MySQL AB. The use of these logos is not entirely
unrestricted but, as the name implies, subject to our trademark policy that is also available
on our Web site. You should read through the trademark policy if you plan to use them.
The requirements are basically as follows:

e Use the logo you need as displayed on the http://www.mysql.com/ site. You may
scale it to fit your needs, but may not change colors or design, or alter the graphics in
any way.

e Make it evident that you, and not MySQL AB, are the creator and owner of the site
that displays the MySQL (registered) trademark.

e Don’t use the trademark in a way that is detrimental to MySQL AB or to the value of
MySQL AB trademarks. We reserve the right to revoke the right to use the MySQL
AB trademark.

e If you use the trademark on a Web site, make it clickable, leading directly to
http://www.mysql.com/.

e If you use the MySQL database under GPL in an application, your application must
be Open Source and must be able to connect to a MySQL server.

Contact us via email at trademark@mysql.com to inquire about special arrangements to fit
your needs.

1.4.4.3 When You Need Written Permission to Use MySQL Logos

You need written permission from MySQL AB before using MySQL logos in the following
cases:

Chapter 1: General Information 21

e When displaying any MySQL AB logo anywhere except on your Web site.

e When displaying any MySQL AB logo except the Conditional Use logos (mentioned
previously) on Web sites or elsewhere.

Due to legal and commercial reasons, we monitor the use of MySQL (registered) trademarks
on products, books, and other items. We usually require a fee for displaying MySQL AB
logos on commercial products, since we think it is reasonable that some of the revenue is
returned to fund further development of the MySQL database.

1.4.4.4 MySQL AB Partnership Logos

MySQL partnership logos may be used only by companies and persons having a written
partnership agreement with MySQL AB. Partnerships include certification as a MySQL
trainer or consultant. For more information, please see Section 1.3.1.5 [Partnering], page 15.

1.4.4.5 Using the Word MySQL in Printed Text or Presentations

MySQL AB welcomes references to the MySQL database, but it should be noted that
the word MySQL is a registered trademark of MySQL AB. Because of this, you must
append the “registered trademark” notice symbol (R) to the first or most prominent use
of the word MySQL in a text and, where appropriate, state that MySQL is a registered
trademark of MySQL AB. For more information, please refer to our trademark policy at
http://www.mysql.com/company/trademark.html.

1.4.4.6 Using the Word MySQL in Company and Product Names

Use of the word MySQL in company or product names or in Internet domain names is not
allowed without written permission from MySQL AB.

1.5 MySQL Development Roadmap

This section provides a snapshot of the MySQL development roadmap, including major
features implemented or planned for MySQL 4.0, 4.1, 5.0, and 5.1. The following sections
provide information for each release series.

The production release series is MySQL 4.0, which was declared stable for production use
as of Version 4.0.12, released in March 2003. This means that future 4.0 development will
be limited only to making bugfixes. For the older MySQL 3.23 series, only critical bugfixes
will be made.

Active MySQL development currently is taking place in the MySQL 4.1 and 5.0 release
series. This means that new features are being added to MySQL 4.1 and MySQL 5.0. 4.1
is available in beta status, and 5.0 is available in alpha status.

Before upgrading from one release series to the next, please see the notes at Section 2.5
[Upgrade], page 132.

Plans for some of the most requested features are summarized in the following table.

Feature MySQL Series

22 MySQL Technical Reference for Version 5.0.0-alpha

Unions 4.0

Subqueries 4.1

R-trees 4.1 (for MyISAM tables)

Stored procedures 5.0

Views 5.0

Cursors 5.0

Foreign keys 5.1 (already implemented in 3.23 for InnoDB)
Triggers 5.1

Full outer join 5.1

Constraints 5.1

1.5.1 MySQL 4.0 in a Nutshell

Long awaited by our users, MySQL Server 4.0 is now available in production status.

MySQL 4.0 is available for download at http://dev.mysql.com/ and from our mirrors.
MySQL 4.0 has been tested by a large number of users and is in production use at many
large sites.

The major new features of MySQL Server 4.0 are geared toward our existing business and
community users, enhancing the MySQL database software as the solution for mission-
critical, heavy-load database systems. Other new features target the users of embedded
databases.

1.5.1.1 Features Available in MySQL 4.0

Speed enhancements
e MySQL 4.0 has a query cache that can give a huge speed boost to appli-
cations with repetitive queries. See Section 5.11 [Query Cache|, page 374.

e Version 4.0 further increases the speed of MySQL Server in a number of
areas, such as bulk INSERT statements, searching on packed indexes, full-
text searching (using FULLTEXT indexes), and COUNT (DISTINCT).

Embedded MySQL Server introduced
e The new Embedded Server library can easily be used to create standalone
and embedded applications. The embedded server provides an alterna-
tive to using MySQL in a client/server environment. See Section 1.5.1.2

[Nutshell Embedded MySQL], page 23.

InnoDB storage engine as standard
e The InnoDB storage engine is now offered as a standard feature of the
MySQL server. This means full support for ACID transactions, foreign
keys with cascading UPDATE and DELETE, and row-level locking are now
standard features. See Chapter 16 [InnoDB], page 787.

New functionality
e The enhanced FULLTEXT search properties of MySQL Server 4.0 enables
FULLTEXT indexing of large text masses with both binary and natural-
language searching logic. You can customize minimal word length and

Chapter 1: General Information 23

define your own stop word lists in any human language, enabling a new set
of applications to be built with MySQL Server. See Section 13.6 [Fulltext
Search], page 623.

Standards compliance, portability, and migration
e Many users will also be happy to learn that MySQL Server now supports
the UNION statement, a long-awaited standard SQL feature.

e MySQL now runs natively on the Novell NetWare platform beginning with
NetWare 6.0. See Section 2.2.4 [NetWare installation], page 95.

e Features to simplify migration from other database systems to MySQL
Server include TRUNCATE TABLE (as in Oracle).

Internationalization
e Our German, Austrian, and Swiss users will note that MySQL 4.0 now
supports a new character set, latinl_de, which ensures that the German
sorting order sorts words with umlauts in the same order as do German
telephone books.

Usability enhancements
In the process of implementing features for new users, we have not forgotten
requests from our loyal community of existing users.

e Most mysqld parameters (startup options) can now be set without taking
down the server. This is a convenient feature for database administrators
(DBAs). See Section 14.5.3.1 [SET OPTION]|, page 730.

e Multiple-table DELETE and UPDATE statements have been added.

e On Windows, symbolic link handling at the database level is enabled by
default. On Unix, the MyISAM storage engine now supports symbolic linking
at the table level (and not just the database level as before).

e SQL_CALC_FOUND_ROWS and FOUND_ROWS() are new functions that make it
possible to find out the number of rows a SELECT query that includes a
LIMIT clause would have returned without that clause.

The news section of this manual includes a more in-depth list of features. See Section C.3
[News-4.0.x], page 1132.

1.5.1.2 The Embedded MySQL Server

The 1ibmysqld embedded server library makes MySQL Server suitable for a vastly expanded
realm of applications. By using this library, developers can embed MySQL Server into
various applications and electronics devices, where the end user has no knowledge of there
actually being an underlying database. Embedded MySQL Server is ideal for use behind
the scenes in Internet appliances, public kiosks, turnkey hardware/software combination
units, high performance Internet servers, self-contained databases distributed on CD-ROM,
and so on.

Many users of 1ibmysqld will benefit from the MySQL Dual Licensing. For those not
wishing to be bound by the GPL, the software is also made available under a commercial
license. The embedded MySQL library uses the same interface as the normal client library,
S0 it is convenient and easy to use. See Section 21.2.15 [1ibmysqld], page 1010.

24 MySQL Technical Reference for Version 5.0.0-alpha

On windows there are two different libraries:

libmysqld.lib Dynamic library for threadded applications.
mysqldemb.lib Static library for not threaded applications.

1.5.2 MySQL 4.1 in a Nutshell

MySQL Server 4.0 laid the foundation for new features implemented in MySQL 4.1, such
as subqueries and Unicode support, and for the work on stored procedures being done in
version 5.0. These features come at the top of the wish list of many of our customers.

With these additions, critics of the MySQL Database Server have to be more imaginative
than ever in pointing out deficiencies in the MySQL database management system. Already
well-known for its stability, speed, and ease of use, MySQL Server is able to fulfill the
requirement checklists of very demanding buyers.

1.5.2.1 Features Available in MySQL 4.1

The MySQL 4.1 features listed in this section already are implemented. A few other MySQL
4.1 features are still planned; see Section 1.6.1 [TODO MySQL 4.1], page 26.

Most new features being coded are or will be available in MySQL 5.0. See Section 1.6.2
[TODO MySQL 5.0], page 26.

Support for subqueries and derived tables
e A “subquery” is a SELECT statement nested within another statement. A
“derived table” (an unnamed view) is a subquery in the FROM clause of
another statement. See Section 14.1.8 [Subqueries], page 678.

Speed enhancements
e Faster binary client/server protocol with support for prepared statements
and parameter binding. See Section 21.2.4 [C API Prepared statements],
page 969.
e BTREE indexing is now supported for HEAP tables, significantly improving
response time for non-exact searches.

New functionality
e CREATE TABLE tbl_name2 LIKE tbl_namel allows you to create, with a
single statement, a new table with a structure exactly like that of an ex-
isting table.

e The MyISAM storage engine now supports OpenGIS spatial types for stor-
ing geographical data. See Chapter 19 [Spatial extensions in MySQL],
page 874.

e Replication can be done over SSL connections.

Standards compliance, portability, and migration
e The new client/server protocol adds the ability to pass multiple warnings
to the client, rather than only a single result. This makes it much easier
to track problems that occur in operations such as bulk data loading.

e SHOW WARNINGS shows warnings for the last command. See Section 14.5.3.20
[SHOW WARNINGS]|, page 748.

Chapter 1: General Information 25

Internationalization and Localization
e To support applications that require the use of local languages, the MySQL
software now offers extensive Unicode support through the utf8 and ucs2
character sets.

e Character sets can now be defined per column, table, and database. This
allows for a high degree of flexibility in application design, particularly for
multi-language Web sites.

e For documentation for this improved character set support, see Chapter 11
[Charset], page 527.

e Per-connection time zones are supported, allowing individual clients to
select their own time zone when necessary.

Usability enhancements

e In response to popular demand, we have added a server-based HELP com-
mand that can be used to get help information for SQL statements. The
advantage of having this information on the server side is that the in-
formation is always applicable to the particular server version that you
actually are using. Because this information is available by issuing an SQL
statement, any client can be written to access it. For example, the help
command of the mysql command-line client has been modified to have this
capability.

e In the new client/server protocol, multiple statements can be issued with
a single call. See Section 21.2.8 [C API multiple queries], page 1000.

e The new client /server protocol also supports returning multiple result sets.
This might occur as a result of sending multiple statements, for example.

e A new INSERT ... ON DUPLICATE KEY UPDATE ... syntax has been imple-
mented. This allows you to UPDATE an existing row if the INSERT would
have caused a duplicate in a PRIMARY or UNIQUE index. See Section 14.1.4
[INSERT], page 656.

e A new aggregate function, GROUP_CONCAT () adds the extremely useful ca-
pability of concatenating column values from grouped rows into a single
result string. See Section 13.9 [Group by functions and modifiers|, page 645.

The news section of this manual includes a more in-depth list of features. See Section C.2
[News-4.1.x], page 1111.

1.5.2.2 Stepwise Rollout

New features are being added to MySQL 4.1. The beta version is already available for
download. See Section 1.5.2.3 [Nutshell Ready for Immediate Use], page 26.

The set of features being added to version 4.1 is mostly fixed. Additional development is
already ongoing for version 5.0. MySQL 4.1 is going through the steps of Alpha (during
which time new features might still be added/changed), Beta (when we have feature freeze
and only bug corrections will be done), and Gamma (indicating that a production release is
just weeks ahead). At the end of this process, MySQL 4.1 will become the new production
release.

26 MySQL Technical Reference for Version 5.0.0-alpha

1.5.2.3 Ready for Immediate Development Use

MySQL 4.1 is currently in the beta stage, and binaries are available for download at
http://dev.mysql.com/downloads/mysql/4.1.html. All binary releases pass our exten-
sive test suite without any errors on the platforms on which we test. See Section C.2
[News-4.1.x], page 1111.

For those wishing to use the most recent development source for MySQL 4.1, we make
our 4.1 BitKeeper repository publicly available. See Section 2.3.3 [Installing source tree],
page 106.

1.5.3 MySQL 5.0: The Next Development Release

New development for MySQL is focused on the 5.0 release, featuring stored procedures and
other new features. See Section 1.6.2 [TODO MySQL 5.0], page 26.

For those wishing to take a look at the bleeding edge of MySQL development, we make our
BitKeeper repository for MySQL version 5.0 publicly available. See Section 2.3.3 [Installing
source tree], page 106. As of December 2003, binary builds of version 5.0 are also available.

1.6 MySQL and the Future (the TODO)

This section summarizes the features that we plan to implement in MySQL Server. The
items are ordered by release series. Within a list, items are shown in approximately the
order they will be done.

Note: If you are an enterprise-level user with an urgent need for a particular feature, please
contact sales@mysql.com to discuss sponsoring options. Targeted financing by sponsor
companies allows us to allocate additional resources for specific purposes. One example of
a feature sponsored in the past is replication.

1.6.1 New Features Planned for 4.1

The following features are not yet implemented in MySQL 4.1, but are planned for im-
plementation as MySQL 4.1 moves into its beta phase. For a list what is already done in
MySQL 4.1, see Section 1.5.2.1 [Nutshell 4.1 features|, page 24.

e Stable OpenSSL support (MySQL 4.0 supports rudimentary, not 100% tested, support
for OpenSSL).

e More testing of prepared statements.

e More testing of multiple character sets for one table.

1.6.2 New Features Planned for 5.0

The following features are planned for inclusion into MySQL 5.0. Some of the features such
as stored procedures are complete and are included in MySQL 5.0 alpha, which is available
now. Others such as cursors are only partially available. Expect these and other features
to mature and be fully supported in upcoming releases.

Chapter 1: General Information 27

Note that because we have many developers that are working on different projects, there
will also be many additional features. There is also a small chance that some of these
features will be added to MySQL 4.1. For a list what is already done in MySQL 4.1, see
Section 1.5.2.1 [Nutshell 4.1 features], page 24.

For those wishing to take a look at the bleeding edge of MySQL development, we make our
BitKeeper repository for MySQL version 5.0 publicly available. See Section 2.3.3 [Installing
source tree], page 106. As of December 2003, binary builds of version 5.0 are also available.

Views, implemented in stepwise fashion up to full functionality. See Sec-
tion 1.8.5.6 [ANSI diff Views|, page 50.

Stored Procedures
e Stored procedures currently are implemented, based on the SQL:2003 stan-
dard. See Chapter 20 [Stored Procedures|, page 903.

New functionality

e Elementary cursor support. See Section 20.1.8 [Cursors|, page 910.

e The ability to specify explicitly for MyISAM tables that an index should
be created as an RTREE index. (In MySQL 4.1, RTREE indexes are used
internally for geometrical data that use GIS data types, but cannot be
created on request.)

e Dynamic length rows for MEMORY tables.

Standards compliance, portability and migration
e Add true VARCHAR support (column lengths longer than 255, and no strip-
ping of trailing whitespace). There is already support for this in the MyISAM
storage engine, but it is not yet available at the user level.

Speed enhancements
e SHOW COLUMNS FROM tbl_name (used by the mysql client to allow expan-
sions of column names) should not open the table, only the definition file.
This will require less memory and be much faster.

e Allow DELETE on MyISAM tables to use the record cache. To do this, we
need to update the threads record cache when we update the ‘.MYD’ file.

e Better support for MEMORY tables:
e Dynamic length rows.
e Faster row handling (less copying).
Usability enhancements

e Resolving the issue of RENAME TABLE on a table used in an active MERGE
table possibly corrupting the table.

The news section of this manual includes a more in-depth list of features. See Section C.1
[News-5.0.x], page 1106.

1.6.3 New Features Planned for 5.1

New functionality
e FOREIGN KEY support for all table types, not just InnoDB.

28 MySQL Technical Reference for Version 5.0.0-alpha

e Column-level constraints. See Section 1.8.6 [Constraints|, page 51.

e Online backup with very low performance penalty. The online backup will
make it easy to add a new replication slave without taking down the master.

Speed enhancements
e New text based table definition file format (‘.frm’ files) and a table cache
for table definitions. This will enable us to do faster queries of table struc-
tures and do more efficient foreign key support.

e Optimize the BIT type to take one bit. (BIT now takes one byte; it is
treated as a synonym for TINYINT.)

Usability enhancements
e Add options to the client/server protocol to get progress notes for long
running commands.

e Implement RENAME DATABASE. To make this safe for all storage engines, it
should work as follows:

1. Create the new database.

2. For every table, do a rename of the table to another database, as we
do with the RENAME command.

3. Drop the old database.

e New internal file interface change. This will make all file handling much
more general and make it easier to add extensions like RAID.

1.6.4 New Features Planned for the Near Future

New functionality
e Oracle-like CONNECT BY PRIOR to search tree-like (hierarchical) structures.

e Add all missing standard SQL and ODBC 3.0 types.
e Add SUM(DISTINCT).

e INSERT SQL_CONCURRENT and mysqld --concurrent-insert to do a con-
current insert at the end of a table if the table is read-locked.

e Allow variables to be updated in UPDATE statements. For example: UPDATE
foo SET @a:=a+b,a=0a, b=0Qa+c.

e Change when user variables are updated so that you can use them with
GROUP BY, as in the following statement: SELECT id, @a:=COUNT (%),
SUM(sum_col)/@a FROM tbl_name GROUP BY id.

e Add an IMAGE option to LOAD DATA INFILE to not update TIMESTAMP and
AUTO_INCREMENT columns.

e Add LOAD DATA INFILE ... UPDATE syntax that works like this:

e For tables with primary keys, if an input record contains a primary key
value, existing rows matching that primary key value are updated from
the remainder of the input columns. However, columns corresponding
to columns that are missing from the input record are not touched.

Chapter 1: General Information 29

e For tables with primary keys, if an input record does not contain the
primary key value or is missing some part of the key, the record is
treated as LOAD DATA INFILE ... REPLACE INTO.

e Make LOAD DATA INFILE understand syntax like this:

LOAD DATA INFILE ’file_name.txt’ INTO TABLE tbl_name
TEXT_FIELDS (text_coll, text_col2, text_col3)
SET table_col1=CONCAT (text_coll, text_col2),
table_co0l3=23
IGNORE text_col3

This can be used to skip over extra columns in the text file, or update
columns based on expressions of the read data.

e New functions for working with SET type columns:
e ADD_TO_SET(value,set)
e REMOVE_FROM_SET(value,set)

e If you abort mysql in the middle of a query, you should open another
connection and kill the old running query. Alternatively, an attempt should
be made to detect this in the server.

e Add a storage engine interface for table information so that you can use it
as a system table. This would be a bit slow if you requested information
about all tables, but very flexible. SHOW INFO FROM tbl_name for basic
table information should be implemented.

e Allow SELECT a FROM tbl_namel LEFT JOIN tbl_name2 USING (a); in
this case a is assumed to come from tbl_namel.

e DELETE and REPLACE options to the UPDATE statement (this will delete rows
when a duplicate-key error occurs while updating).

e Change the format of DATETIME to store fractions of seconds.

e Make it possible to use the new GNU regexp library instead of the current
one (the new library should be much faster than the current one).

Standards compliance, portability and migration
e Don’t add automatic DEFAULT values to columns. Produce an error for
any INSERT statement that is missing a value for a column that has no
DEFAULT.

e Add ANY(), EVERY(), and SOME() group functions. In standard SQL, these
work only on boolean columns, but we can extend these to work on any

columns or expressions by treating a value of zero as FALSE and non-zero
values as TRUE.

e Fix the type of MAX(column) to be the same as the column type:

mysql> CREATE TABLE t1 (a DATE);

mysql> INSERT INTO t1 VALUES (NOW(Q));

mysql> CREATE TABLE t2 SELECT MAX(a) FROM t1;
mysql> SHOW COLUMNS FROM t2;

Speed enhancements
e Don’t allow more than a defined number of threads to run MyISAM recovery
at the same time.

30

MySQL Technical Reference for Version 5.0.0-alpha

Change INSERT INTO ... SELECT to optionally use concurrent inserts.
Add an option to periodically flush key pages for tables with delayed keys
if they haven’t been used in a while.

Allow join on key parts (optimization issue).

Add a log file analyzer that can extract information about which tables are
hit most often, how often multiple-table joins are executed, and so on. This
should help users identify areas of table design that could be optimized to
execute much more efficient queries.

Usability enhancements

Return the original column types when doing SELECT MIN(column) ...
GROUP BY.

Make it possible to specify long_query_time with a granularity in mi-
croseconds.

Link the myisampack code into the server so that it can perform PACK or
COMPRESS operations.

Add a temporary key buffer cache during INSERT/DELETE/UPDATE so that
we can gracefully recover if the index file gets full.

If you perform an ALTER TABLE on a table that is symlinked to another
disk, create temporary tables on that disk.

Implement a DATE/DATETIME type that handles time zone information prop-
erly, to make dealing with dates in different time zones easier.

Fix configure so that all libraries (like MyISAM) can be compiled without
threads.

Allow user variables as LIMIT arguments; for example, LIMIT @a, @b.
Automatic output from mysql to a Web browser.
LOCK DATABASES (with various options).

Many more variables for SHOW STATUS. Record reads and updates. Selects
on a single table and selects with joins. Mean number of tables in selects.
Number of ORDER BY and GROUP BY queries.

mysqladmin copy database new-database; this requires a COPY operation
to be added to mysqld.

Processlist output should indicate the number of queries/threads.
SHOW HOSTS for printing information about the hostname cache.
Change table names from empty strings to NULL for calculated columns.

Don’t use Item_copy_string on numerical values to avoid number-to-
string-to-number conversion in case of SELECT COUNT (*)*(id+0) FROM
tbl_name GROUP BY id.

Change so that ALTER TABLE doesn’t abort clients that execute INSERT
DELAYED.

Fix so that when columns are referenced in an UPDATE clause, they contain
the old values from before the update started.

New operating systems

Port the MySQL clients to LynxOS.

Chapter 1: General Information 31

1.6.5 New Features Planned for the Mid-Term Future

e Implement function: get_changed_tables(timeout,tablel,table2,...).

e Change reading through tables to use mmap() when possible. Now only compressed
tables use mmap ().

e Make the automatic timestamp code nicer. Add timestamps to the update log with
SET TIMESTAMP=val;.

e Use read/write mutex in some places to get more speed.

e Automatically close some tables if a table, temporary table, or temporary file gets error
23 (too many open files).

e Better constant propagation. When an occurrence of col_name=n is found in an expres-
sion, for some constant n, replace other occurrences of col_name within the expression
with n. Currently, this is done only for some simple cases.

e Change all const expressions with calculated expressions if possible.

e Optimize key = expr comparisons. At the moment, only key = column or key =
constant comparisons are optimized.

e Join some of the copy functions for nicer code.

e Change ‘sql_yacc.yy’ to an inline parser to reduce its size and get better error mes-
sages.

e Change the parser to use only one rule per different number of arguments in function.
e Use of full calculation names in the order part (for Access97).

e MINUS, INTERSECT, and FULL OUTER JOIN. (Currently UNION and LEFT|RIGHT OUTER
JOIN are supported.)

e Allow SQL_OPTION MAX_SELECT_TIME=val, for placing a time limit on a query.

e Allow updates to be logged to a database.

e Enhance LIMIT to allow retrieval of data from the end of a result set.

e Alarm around client connect/read/write functions.

e Please note the changes to mysqld_safe: According to FSSTND (which Debian tries
to follow), PID files should go into ‘/var/run/<progname>.pid’ and log files into
‘/var/log’. It would be nice if you could put the "DATADIR" in the first decla-
ration of "pidfile" and "log" so that the placement of these files can be changed with
a single statement.

e Allow a client to request logging.

e Allow the LOAD DATA INFILE statement to read files that have been compressed with
gzip.

e Fix sorting and grouping of BLOB columns (partly solved now).

e Change to use semaphores when counting threads. One should first implement a
semaphore library for MIT-pthreads.

e Add full support for JOIN with parentheses.

e As an alternative to the one-thread-per-connection model, manage a pool of threads
to handle queries.

e Allow GET_LOCK() to obtain more than one lock. When doing this, it is also necessary
to handle the possible deadlocks this change will introduce.

32 MySQL Technical Reference for Version 5.0.0-alpha

1.6.6 New Features We Don’t Plan to Implement

We aim toward full compliance with ANSI/ISO SQL. There are no features we plan not to
implement.

1.7 MySQL Information Sources

1.7.1 MySQL Mailing Lists

This section introduces the MySQL mailing lists and provides guidelines as to how the lists
should be used. When you subscribe to a mailing list, you will receive all postings to the
list as email messages. You can also send your own questions and answers to the list.

1.7.1.1 The MySQL Mailing Lists

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit
http://lists.mysql.com/. Please do not send messages about subscribing or unsubscrib-
ing to any of the mailing lists, because such messages are distributed automatically to
thousands of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may
have a local mailing list, so that messages sent from lists.mysql.com to your site are
propagated to the local list. In such cases, please contact your system administrator to be
added to or dropped from the local MySQL list.

If you wish to have traffic for a mailing list go to a separate mailbox in your mail program, set
up a filter based on the message headers. You can use either the List-ID: or Delivered-
To: headers to identify list messages.

The MySQL mailing lists are as follows:

announce This list is for announcements of new versions of MySQL and related programs.
This is a low-volume list to which all MySQL users should subscribe.

mysql This is the main list for general MySQL discussion. Please note that some
topics are better discussed on the more-specialized lists. If you post to the
wrong list, you may not get an answer.

mysql-digest
This is the mysql list in digest form. Subscribing to this list means you will get
all list messages, sent as one large mail message once a day.

bugs This list will be of interest to you if you want to stay informed about issues
reported since the last release of MySQL or if you want to be actively involved
in the process of bug hunting and fixing. See Section 1.7.1.3 [Bug reports],
page 35.

bugs-digest
This is the bugs list in digest form.

Chapter 1: General Information 33

internals
This list is for people who work on the MySQL code. This is also the forum for
discussions on MySQL development and for posting patches.

internals-digest
This is the internals list in digest form.

mysqldoc This list is for people who work on the MySQL documentation: people from
MySQL AB, translators, and other community members.

mysqldoc-digest
This is the mysqldoc list in digest form.

benchmarks
This list is for anyone interested in performance issues. Discussions concentrate
on database performance (not limited to MySQL), but also include broader
categories such as performance of the kernel, filesystem, disk system, and so
on.

benchmarks-digest
This is the benchmarks list in digest form.

packagers
This list is for discussions on packaging and distributing MySQL. This is the
forum used by distribution maintainers to exchange ideas on packaging MySQL
and on ensuring that MySQL looks and feels as similar as possible on all sup-
ported platforms and operating systems.

packagers—-digest
This is the packagers list in digest form.

java This list is for discussions about the MySQL server and Java. It is mostly used
to discuss JDBC drivers, including MySQL Connector/J.

java-digest
This is the java list in digest form.

win32 This list is for all topics concerning the MySQL software on Microsoft operating
systems, such as Windows 9x, Me, NT, 2000, and XP.

win32-digest
This is the win32 list in digest form.

myodbc This list is for all topics concerning connecting to the MySQL server with
ODBC.

myodbc-digest
This is the myodbc list in digest form.

gui-tools
This list is for all topics concerning MySQL GUI tools, including MySQL
Administrator and the MySQL Control Center graphical client.

gui-tools-digest
This is the gui-tools list in digest form.

34 MySQL Technical Reference for Version 5.0.0-alpha

cluster This list is for discussion of MYSQL Cluster.

cluster-digest
This is the cluster list in digest form.

plusplus This list is for all topics concerning programming with the C++ API for MySQL.

plusplus-digest
This is the plusplus list in digest form.

msql-mysql-modules
This list is for all topics concerning the Perl support for MySQL with msql-
mysql-modules, which is now named DBD: :mysql.

msql-mysql-modules-digest
This is the msql-mysql-modules list in digest form.

If you’re unable to get an answer to your questions from a MySQL mailing list, one option
is to purchase support from MySQL AB. This will put you in direct contact with MySQL
developers. See Section 1.4.1 [Support|, page 16.

The following table shows some MySQL mailing lists in languages other than English. These
lists are not operated by MySQL AB.

mysql-france-subscribe@yahoogroups.com
A French mailing list.

list@tinc.net
A Korean mailing list. Email subscribe mysql your@email.address to this
list.

mysql-de-request@lists.4t2.com
A German mailing list. Email subscribe mysql-de your@email.address
to this list. You can find information about this mailing list at
http://www.4t2.com/mysql/.

mysql-br-request@listas.linkway.com.br
A Portuguese mailing list. Email subscribe mysql-br your@email .address
to this list.

mysql-alta@elistas.net
A Spanish mailing list. Email subscribe mysql your@email.address to this
list.

1.7.1.2 Asking Questions or Reporting Bugs

Before posting a bug report or question, please do the following:

e Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try
to keep the manual up to date by updating it frequently with solutions to newly found
problems. The change history (http://dev.mysql.com/doc/mysql/en/News.html)
can be particularly useful since it is quite possible that a newer version already contains
a solution to your problem.

e Search in the bugs database at http://bugs.mysql.com/ to see whether the bug has
already been reported and fixed.

Chapter 1: General Information 35

e Search the MySQL mailing list archives at http://lists.mysql.com/.

e You can also use http://www.mysql.com/search/ to search all the Web pages (in-
cluding the manual) that are located at the MySQL AB Web site.

If you can’t find an answer in the manual or the archives, check with your local MySQL
expert. If you still can’t find an answer to your question, please follow the guidelines on
sending mail to a MySQL mailing list, outlined in the next section, before contacting us.

1.7.1.3 How to Report Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our
bugs database. This database is public, and can be browsed and searched by anyone. If
you log in to the system, you will also be able to enter new reports.

Writing a good bug report takes patience, but doing it right the first time saves time both
for us and for yourself. A good bug report, containing a full test case for the bug, makes
it very likely that we will fix the bug in the next release. This section will help you write
your report correctly so that you don’t waste your time doing things that may not help us
much or at all.

We encourage everyone to use the mysqlbug script to generate a bug report (or a report
about any problem). mysqlbug can be found in the ‘scripts’ directory (source distribution)
and in the ‘bin’ directory under your MySQL installation directory (binary distribution).
If you are unable to use mysqlbug (for example, if you are running on Windows), it is still
vital that you include all the necessary information noted in this section (most importantly,
a description of the operating system and the MySQL version).

The mysqlbug script helps you generate a report by determining much of the following
information automatically, but if something important is missing, please include it with
your message. Please read this section carefully and make sure that all the information
described here is included in your report.

Preferably, you should test the problem using the latest production or development version
of MySQL Server before posting. Anyone should be able to repeat the bug by just using
mysql test < script_file on the included test case or by running the shell or Perl script
that is included in the bug report.

All bugs posted in the bugs database at http://bugs.mysql.com/ will be corrected or
documented in the next MySQL release. If only minor code changes are needed to correct
a problem, we may also post a patch that fixes the problem.

If you have found a sensitive security bug in MySQL, you can send email to
security@mysql.com.

If you have a repeatable bug report, please report it to the bugs database at
http://bugs.mysql.com/. Note that even in this case it’s good to run the mysqlbug
script first to find information about your system. Any bug that we are able to repeat has
a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much informa-
tion, but not to one containing too little. People often omit facts because they think they
know the cause of a problem and assume that some details don’t matter. A good principle is

36 MySQL Technical Reference for Version 5.0.0-alpha

this: If you are in doubt about stating something, state it. It is faster and less troublesome
to write a couple more lines in your report than to wait longer for the answer if we must
ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of the
MySQL distribution used, and (b) not fully describing the platform on which the MySQL
server is installed (including the platform type and version number). This is highly relevant
information, and in 99 cases out of 100, the bug report is useless without it. Very often we
get questions like, “Why doesn’t this work for me?” Then we find that the feature requested
wasn’t implemented in that MySQL version, or that a bug described in a report has already
been fixed in newer MySQL versions. Sometimes the error is platform-dependent; in such
cases, it is next to impossible for us to fix anything without knowing the operating system
and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your
compiler, if it is related to the problem. Often people find bugs in compilers and think the
problem is MySQL-related. Most compilers are under development all the time and become
better version by version. To determine whether your problem depends on your compiler,
we need to know what compiler you use. Note that every compiling problem should be
regarded as a bug and reported accordingly.

It is most helpful when a good description of the problem is included in the bug report.
That is, give a good example of everything you did that led to the problem and describe,
in exact detail, the problem itself. The best reports are those that include a full example
showing how to reproduce the bug or problem. See Section D.1.6 [Reproduceable test case],
page 1283.

If a program produces an error message, it is very important to include the message in your
report. If we try to search for something from the archives using programs, it is better that
the error message reported exactly matches the one that the program produces. (Even the
lettercase should be observed.) You should never try to reproduce from memory what the
error message was; instead, copy and paste the entire message into your report.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a My-
ODBC trace file and send it with your report. See Section 21.3.7 [MyODBC bug report],
page 1024.

Please remember that many of the people who will read your report will do so using an
80-column display. When generating reports or examples using the mysql command-line
tool, you should therefore use the --vertical option (or the \G statement terminator) for
output that would exceed the available width for such a display (for example, with the
EXPLAIN SELECT statement; see the example later in this section).

Please include the following information in your report:

e The version number of the MySQL distribution you are using (for example, MySQL
4.0.12). You can find out which version you are running by executing mysqladmin
version. The mysqladmin program can be found in the ‘bin’ directory under your
MySQL installation directory.

e The manufacturer and model of the machine on which you experience the problem.

e The operating system name and version. If you work with Windows, you can usually get
the name and version number by double-clicking your My Computer icon and pulling

Chapter 1: General Information 37

down the “Help/About Windows” menu. For most Unix-like operating systems, you
can get this information by executing the command uname -a.

e Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include
these values.

e If you are using a source distribution of the MySQL software, the name and version
number of the compiler used are needed. If you have a binary distribution, the distri-
bution name is needed.

e If the problem occurs during compilation, include the exact error messages and also a
few lines of context around the offending code in the file where the error occurs.

e Ifmysqld died, you should also report the query that crashed mysqld. You can usually
find this out by running mysqld with query logging enabled, and then looking in the
log after mysqld crashes See Section D.1.5 [Using log files], page 1282.

e If a database table is related to the problem, include the output from mysqldump -
-no-data db_name tbl_name. This is very easy to do and is a powerful way to get
information about any table in a database. The information will help us create a
situation matching the one you have.

e For speed-related bugs or problems with SELECT statements, you should always include
the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT
statement produces. You should also include the output from SHOW CREATE TABLE tbl_
name for each involved table. The more information you give about your situation, the
more likely it is that someone can help you.

The following is an example of a very good bug report. It should be posted with the
mysqlbug script. The example uses the mysql command-line tool. Note the use of the
\G statement terminator for statements whose output width would otherwise exceed
that of an 80-column display device.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
<output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
<output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
<A short version of the output from SELECT,
including the time taken to run the query>
mysql> SHOW STATUS;
<output from SHOW STATUS>

e If a bug or problem occurs while running mysqld, try to provide an input script that
will reproduce the anomaly. This script should include any necessary source files. The
more closely the script can reproduce your situation, the better. If you can make a
reproducible test case, you should post it on http://bugs.mysql.com/ for high-priority
treatment.

If you can’t provide a script, you should at least include the output from mysqladmin
variables extended-status processlist in your mail to provide some information
on how your system is performing.

38

MySQL Technical Reference for Version 5.0.0-alpha

e If you can’t produce a test case with only a few rows, or if the test table is too big to

be mailed to the mailing list (more than 10 rows), you should dump your tables using
mysqldump and create a ‘README’ file that describes your problem.

Create a compressed archive of your files using tar and gzip or zip, and use FTP to
transfer the archive to ftp://ftp.mysql.com/pub/mysql/upload/. Then enter the
problem into our bugs database at http://bugs.mysql.com/.

If you think that the MySQL server produces a strange result from a query, include
not only the result, but also your opinion of what the result should be, and an account
describing the basis for your opinion.

When giving an example of the problem, it’s better to use the variable names, table
names, and so on that exist in your actual situation than to come up with new names.
The problem could be related to the name of a variable or table. These cases are rare,
perhaps, but it is better to be safe than sorry. After all, it should be easier for you to
provide an example that uses your actual situation, and it is by all means better for
us. In case you have data that you don’t want to show to others, you can use FTP to
transfer it to ftp://ftp.mysql.com/pub/mysql/upload/. If the information is really
top secret and you don’t want to show it even to us, then go ahead and provide an
example using other names, but please regard this as the last choice.

Include all the options given to the relevant programs, if possible. For example, indicate
the options that you use when you start the mysqld server as well as the options that
you use to run any MySQL client programs. The options to programs such as mysqld
and mysql, and to the configure script, are often keys to answers and are very relevant.
It is never a bad idea to include them. If you use any modules, such as Perl or PHP,
please include the version numbers of those as well.

If your question is related to the privilege system, please include the output of
mysqlaccess, the output of mysqladmin reload, and all the error messages you
get when trying to connect. When you test your privileges, you should first run
mysqlaccess. After this, execute mysqladmin reload version and try to connect
with the program that gives you trouble. mysqlaccess can be found in the ‘bin’
directory under your MySQL installation directory.

If you have a patch for a bug, do include it. But don’t assume that the patch is all we
need, or that we will use it, if you don’t provide some necessary information such as
test cases showing the bug that your patch fixes. We might find problems with your
patch or we might not understand it at all; if so, we can’t use it.

If we can’t verify exactly what the purpose of the patch is, we won’t use it. Test cases
will help us here. Show that the patch will handle all the situations that may occur.
If we find a borderline case (even a rare one) where the patch won’t work, it may be
useless.

Guesses about what the bug is, why it occurs, or what it depends on are usually
wrong. Even the MySQL team can’t guess such things without first using a debugger
to determine the real cause of a bug.

Indicate in your bug report that you have checked the reference manual and mail archive
so that others know you have tried to solve the problem yourself.

If you get a parse error, please check your syntax closely. If you can’t find something
wrong with it, it’s extremely likely that your current version of MySQL Server doesn’t

Chapter 1: General Information 39

support the syntax you are using. If you are using the current version and the manual at
http://dev.mysql.com/doc/ doesn’t cover the syntax you are using, MySQL Server
doesn’t support your query. In this case, your only options are to implement the syntax
yourself or email 1icensing@mysql.com and ask for an offer to implement it.

If the manual covers the syntax you are using, but you have an older version of MySQL
Server, you should check the MySQL change history to see when the syntax was imple-
mented. In this case, you have the option of upgrading to a newer version of MySQL
Server. See Appendix C [News|, page 1106.

e If your problem is that your data appears corrupt or you get errors when you ac-
cess a particular table, you should first check and then try to repair your tables with
CHECK TABLE and REPAIR TABLE or with myisamchk. See Chapter 5 [MySQL Database
Administration], page 229.

If you are running Windows, please verify that lower_case_table_names is 1 or 2 with
SHOW VARIABLES LIKE ’lower_case_table_names’.

e If you often get corrupted tables, you should try to find out when and why this happens.
In this case, the error log in the MySQL data directory may contain some information
about what happened. (This is the file with the ‘.err’ suffix in the name.) See
Section 5.9.1 [Error log], page 361. Please include any relevant information from this
file in your bug report. Normally mysqld should never crash a table if nothing killed it
in the middle of an update. If you can find the cause of mysqld dying, it’s much easier
for us to provide you with a fix for the problem. See Section A.1 [What is crashing],
page 1064.

e If possible, download and install the most recent version of MySQL Server and check
whether it solves your problem. All versions of the MySQL software are thoroughly
tested and should work without problems. We believe in making everything as
backward-compatible as possible, and you should be able to switch MySQL versions
without difficulty. See Section 2.1.2 [Which version], page 62.

If you are a support customer, please cross-post the bug report to mysql-support@mysql . com]
for higher-priority treatment, as well as to the appropriate mailing list to see whether
someone else has experienced (and perhaps solved) the problem.

For information on reporting bugs in MyODBC, see Section 21.3.4 [ODBC Problems],
page 1018.

For solutions to some common problems, see Appendix A [Problems|, page 1064.

When answers are sent to you individually and not to the mailing list, it is considered good

etiquette to summarize the answers and send the summary to the mailing list so that others
may have the benefit of responses you received that helped you solve your problem.

1.7.1.4 Guidelines for Answering Questions on the Mailing List

If you consider your answer to have broad interest, you may want to post it to the mailing
list instead of replying directly to the individual who asked. Try to make your answer
general enough that people other than the original poster may benefit from it. When you
post to the list, please make sure that your answer is not a duplication of a previous answer.

Try to summarize the essential part of the question in your reply; don’t feel obliged to quote
the entire original message.

40 MySQL Technical Reference for Version 5.0.0-alpha

Please don’t post mail messages from your browser with HTML mode turned on. Many
users don’t read mail with a browser.

1.7.2 MySQL Community Support on IRC (Internet Relay Chat)

In addition to the various MySQL mailing lists, you can find experienced community people
on IRC (Internet Relay Chat). These are the best networks/channels currently known to
us:

e freenode (see http://www.freenode.net/ for servers)

e #mysql Primarily MySQL questions, but other database and general SQL questions
are welcome. Questions about PHP, Perl or C in combination with MySQL are
also common.

e EFnet (see http://www.efnet.org/ for servers)
e #mysql MySQL questions.

If you are looking for IRC client software to connect to an IRC network, take a look at
X-Chat (http://www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as
for Windows platforms.

1.8 MySQL Standards Compliance

This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server
has many extensions to the SQL standard, and here you will find out what they are and
how to use them. You will also find information about functionality missing from MySQL
Server, and how to work around some differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual,
“SQL-92” refers to the standard released in 1992, “SQL:1999” refers to the standard released
in 1999, and “SQL:2003” refers to the current version of the standard. We use the phrase
“the SQL standard” to mean the current version of the SQL Standard at any time.

Our goal is to not restrict MySQL Server usability for any usage without a very good reason
for doing so. Even if we don’t have the resources to perform development for every possible
use, we are always willing to help and offer suggestions to people who are trying to use
MySQL Server in new territories.

One of our main goals with the product is to continue to work toward compliance with
the SQL standard, but without sacrificing speed or reliability. We are not afraid to add
extensions to SQL or support for non-SQL features if this greatly increases the usability
of MySQL Server for a large segment of our user base. The HANDLER interface in MySQL
Server 4.0 is an example of this strategy. See Section 14.1.3 [HANDLER], page 654.

We will continue to support transactional and non-transactional databases to satisfy both
mission-critical 24/7 usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium size databases (10-100 million
rows, or about 100MB per table) on small computer systems. Today MySQL Server handles
terabyte-size databases, but the code can also be compiled in a reduced version suitable
for hand-held and embedded devices. The compact design of the MySQL server makes
development in both directions possible without any conflicts in the source tree.

Chapter 1: General Information 41

Currently, we are not targeting realtime support, although MySQL replication capabilities
already offer significant functionality.

Database cluster support now exists through third-party clustering solutions as well as the
integration of our acquired NDB Cluster technology into a new storage engine, available
from version 4.1.2. See Chapter 17 [NDBCluster], page 842.

We are also looking at providing XML support in the database server.

1.8.1 What Standards MySQL Follows

We are aiming toward supporting the full ANSI/ISO SQL standard, but without making
concessions to speed and quality of the code.

ODBC levels 0—3.51.

1.8.2 Selecting SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differ-
entially for different clients. This allows applications to tailor server operation to their own
requirements.

Modes define what SQL syntax MySQL should support and what kind of validation checks
it should perform on the data. This makes it easier to use MySQL in a lot of different
environments and to use MySQL together with other database servers.

You can set the default SQL mode by starting mysqld with the --sql-mode="modes" option.
Beginning with MySQL 4.1, you can also change the mode after startup time by setting the
sql_mode variable with a SET [SESSION|GLOBAL] sql_mode=’modes’ statement.

For more information on setting the server mode, see Section 5.2.2 [Server SQL mode],
page 249.

1.8.3 Running MySQL in ANSI Mode

You can tell mysqld to use the ANSI mode with the -—ansi startup option. See Section 5.2.1
[Server options], page 239.
Running the server in ANSI mode is the same as starting it with these options (specify the
--sql_mode value on a single line):
--transaction-isolation=SERIALIZABLE
--sql-mode=REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,
IGNORE_SPACE,ONLY_FULL_GROUP_BY

In MySQL 4.1, you can achieve the same effect with these two statements (specify the
sql_mode value on a single line):

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = ’REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,
IGNORE_SPACE,ONLY_FULL_GROUP_BY’;

See Section 1.8.2 [SQL mode]|, page 41.
In MySQL 4.1.1, the sql_mode options shown can be also be set with this statement:

42 MySQL Technical Reference for Version 5.0.0-alpha

SET GLOBAL sql_mode=’ansi’;

In this case, the value of the sql_mode variable will be set to all options that are relevant
for ANSI mode. You can check the result like this:

mysql> SET GLOBAL sql_mode=’ansi’;
mysql> SELECT @@global.sql_mode;
-> ’REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,
IGNORE_SPACE,ONLY_FULL_GROUP_BY,ANSI’;

1.8.4 MySQL Extensions to Standard SQL

MySQL Server includes some extensions that you probably will not find in other SQL
databases. Be warned that if you use them, your code will not be portable to other SQL
servers. In some cases, you can write code that includes MySQL extensions, but is still
portable, by using comments of the form /*! ... */. In this case, MySQL Server will
parse and execute the code within the comment as it would any other MySQL statement,
but other SQL servers will ignore the extensions. For example:

SELECT /=*! STRAIGHT_JOIN */ col_name FROM tablel,table2 WHERE ...

If you add a version number after the ‘!’ character, the syntax within the comment will be
executed only if the MySQL version is equal to or newer than the specified version number:

CREATE /%!32302 TEMPORARY */ TABLE t (a INT);

This means that if you have Version 3.23.02 or newer, MySQL Server will use the TEMPORARY
keyword.

The following descriptions list MySQL extensions, organized by category.

Organization of data on disk
MySQL Server maps each database to a directory under the MySQL data di-
rectory, and tables within a database to filenames in the database directory.
This has a few implications:

e Database names and table names are case sensitive in MySQL Server on
operating systems that have case-sensitive filenames (such as most Unix
systems). See Section 10.2.2 [Name case sensitivity], page 517.

e You can use standard system commands to back up, rename, move, delete,
and copy tables that are managed by the MyISAM or ISAM storage engines.
For example, to rename a MyISAM table, rename the ‘.MYD’, ‘.MYI’, and
‘.frm’ files to which the table corresponds.

Database, table, index, column, or alias names may begin with a digit (but may
not consist solely of digits).

General language syntax
e Strings may be enclosed by either

‘n?

or >’, not just by ‘*’.

e Use of ‘\’ as an escape character in strings.

e In SQL statements, you can access tables from different databases with the
db_name.tbl_name syntax. Some SQL servers provide the same function-
ality but call this User space. MySQL Server doesn’t support tablespaces
such as used in statements like this: CREATE TABLE ralph.my_table...IN
my_tablespace.

Chapter 1: General Information 43

SQL statement syntax

The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements.

The CREATE DATABASE and DROP DATABASE statements. See Section 14.2.3
[CREATE DATABASE], page 695.

The DO statement.

EXPLAIN SELECT to get a description of how tables are joined.
The FLUSH and RESET statements.

The SET statement. See Section 14.5.3.1 [SET], page 730.

The SHOW statement. See Section 14.5.3 [SHOW], page 729.

Use of LOAD DATA INFILE. In many cases, this syntax is compatible with
Oracle’s LOAD DATA INFILE. See Section 14.1.5 [LOAD DATA], page 662.

Use of RENAME TABLE. See Section 14.2.9 [RENAME TABLE|, page 710.

Use of REPLACE instead of DELETE + INSERT. See Section 14.1.6 [REPLACE],
page 669.

Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or
RENAME in an ALTER TABLE statement. Use of multiple ADD, ALTER, DROP,
or CHANGE clauses in an ALTER TABLE statement. See Section 14.2.2 [ALTER
TABLE], page 690.

Use of index names, indexes on a prefix of a field, and use of INDEX or KEY
in a CREATE TABLE statement. See Section 14.2.5 [CREATE TABLE], page 697.

Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

Use of IF EXISTS with DROP TABLE.

You can drop multiple tables with a single DROP TABLE statement.

The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.
INSERT INTO ... SET col_name = ... syntax.

The DELAYED clause of the INSERT and REPLACE statements.

The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE
statements.

Use of INTO OUTFILE and STRAIGHT_JOIN in a SELECT statement. See
Section 14.1.7 [SELECT], page 670.

The SQL_SMALL_RESULT option in a SELECT statement.

You don’t need to name all selected columns in the GROUP BY part. This

gives better performance for some very specific, but quite normal queries.
See Section 13.9 [Group by functions and modifiers|, page 645.

You can specify ASC and DESC with GROUP BY.
The ability to set variables in a statement with the := assignment operator:

mysql> SELECT @a:=SUM(total) ,@b=COUNT(*),@a/@b AS avg
-> FROM test_table;
mysql> SELECT @t1:=(@t2:=1)+0t3:=4,0t1,0t2,0t3;

44

Column types

MySQL Technical Reference for Version 5.0.0-alpha

The column types MEDIUMINT, SET, ENUM, and the different BLOB and TEXT
types.

The column attributes AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and
ZEROFILL.

Functions and operators

To make it easier for users who come from other SQL environments,
MySQL Server supports aliases for many functions. For example, all
string functions support both standard SQL syntax and ODBC syntax.

MySQL Server understands the || and && operators to mean logical OR
and AND, as in the C programming language. In MySQL Server, || and
OR are synonyms, as are && and AND. Because of this nice syntax, MySQL
Server doesn’t support the standard SQL || operator for string concate-
nation; use CONCAT() instead. Because CONCAT() takes any number of
arguments, it’s easy to convert use of the || operator to MySQL Server.
Use of COUNT(DISTINCT list) where 1ist has more than one element.
All string comparisons are case-insensitive by default, with sort ordering
determined by the current character set (ISO-8859-1 Latinl by default).
If you don’t like this, you should declare your columns with the BINARY
attribute or use the BINARY cast, which causes comparisons to be done
using the underlying character code values rather then a lexical ordering.
The % operator is a synonym for MOD(). That is, N % M is equivalent to
MOD(N,M). % is supported for C programmers and for compatibility with
PostgreSQL.
The =, <>, <= <, >=>, <<, >> <=>, AND, OR, or LIKE operators may be used
in column comparisons to the left of the FROM in SELECT statements. For
example:

mysql> SELECT coll=1 AND col2=2 FROM tbl_name;

The LAST_INSERT_ID() function that returns the most recent
AUTO_INCREMENT value. See Section 13.8.3 [Information functions],
page 637.

LIKE is allowed on numeric columns.

The REGEXP and NOT REGEXP extended regular expression operators.
CONCAT() or CHAR() with one argument or more than two arguments. (In
MySQL Server, these functions can take any number of arguments.)

The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IFQ),
PASSWORD(), ENCRYPT(), MD5(), ENCODE(), DECODE(), PERIOD_ADD(),
PERIOD_DIFF (), TO_DAYS(), and WEEKDAY() functions.

Use of TRIM() to trim substrings. Standard SQL supports removal of single
characters only.
The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and

GROUP_CONCAT(). See Section 13.9 [Group by functions and modifiers],
page 645.

Chapter 1: General Information 45

For a prioritized list indicating when new extensions will be added to MySQL Server, you

should consult the online MySQL TODO list at http://dev.mysql.com/doc/mysql/en/TODO. html. ||
That is the latest version of the TODO list in this manual. See Section 1.6 [TODO],

page 26.

1.8.5 MySQL Differences from Standard SQL

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard,
but MySQL Server performs operations differently in some cases:

e For VARCHAR columns, trailing spaces are removed when the value is stored. See Sec-
tion 1.8.7 [Bugs], page 53.

e In some cases, CHAR columns are silently converted to VARCHAR columns when you define
a table or alter its structure. See Section 14.2.5.1 [Silent column changes], page 707.

e Privileges for a table are not automatically revoked when you delete a table. You must
explicitly issue a REVOKE statement to revoke privileges for a table. See Section 14.5.1.2
[GRANT], page 717.

1.8.5.1 Subqueries

MySQL 4.1 supports subqueries and derived tables. A “subquery” is a SELECT statement
nested within another statement. A “derived table” (an unnamed view) is a subquery in
the FROM clause of another statement. See Section 14.1.8 [Subqueries|, page 678.

For MySQL versions older than 4.1, most subqueries can be rewritten using joins or other
methods. See Section 14.1.8.11 [Rewriting subqueries|, page 687 for examples that show
how to do this.

1.8.5.2 SELECT INTO TABLE

MySQL Server doesn’t support the Sybase SQL extension: SELECT ... INTO TABLE
Instead, MySQL Server supports the standard SQL syntax INSERT INTO ... SELECT ...,
which is basically the same thing. See Section 14.1.4.1 [INSERT SELECT], page 659.

INSERT INTO tbl_temp2 (fld_id)
SELECT tbl_templ.fld_order_id
FROM tbl_templ WHERE tbl_templ.fld_order_id > 100;

Alternatively, you can use SELECT INTO OUTFILE ... or CREATE TABLE ... SELECT.

From version 5.0, MySQL supports SELECT ... INTO with user variables. The same syntax
may also be used inside stored procedures using cursors and local variables. See Sec-
tion 20.1.6.3 [SELECT INTO Statement|, page 908.

1.8.5.3 Transactions and Atomic Operations

MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions with
the InnoDB and BDB transactional storage engines. InnoDB provides full ACID compliance.
See Chapter 15 [Table types], page 766.

46 MySQL Technical Reference for Version 5.0.0-alpha

The other non-transactional storage engines in MySQL Server (such as MyISAM) follow a
different paradigm for data integrity called “atomic operations.” In transactional terms,
MyISAM tables effectively always operate in AUTOCOMMIT=1 mode. Atomic operations often
offer comparable integrity with higher performance.

With MySQL Server supporting both paradigms, you can decide whether your applications
are best served by the speed of atomic operations or the use of transactional features. This
choice can be made on a per-table basis.

As noted, the trade-off for transactional versus non-transactional table types lies mostly
in performance. Transactional tables have significantly higher memory and diskspace re-
quirements, and more CPU overhead. On the other hand, transactional table types such as
InnoDB also offer many significant features. MySQL Server’s modular design allows the con-
current use of different storage engines to suit different requirements and deliver optimum
performance in all situations.

But how do you use the features of MySQL Server to maintain rigorous integrity even
with the non-transactional MyISAM tables, and how do these features compare with the
transactional table types?

1. If your applications are written in a way that is dependent on being able to call
ROLLBACK rather than COMMIT in critical situations, transactions are more convenient.
Transactions also ensure that unfinished updates or corrupting activities are not com-
mitted to the database; the server is given the opportunity to do an automatic rollback
and your database is saved.

If you use non-transactional tables, MySQL Server in almost all cases allows you to
resolve potential problems by including simple checks before updates and by running
simple scripts that check the databases for inconsistencies and automatically repair or
warn if such an inconsistency occurs. Note that just by using the MySQL log or even
adding one extra log, you can normally fix tables perfectly with no data integrity loss.

2. More often than not, critical transactional updates can be rewritten to be atomic.
Generally speaking, all integrity problems that transactions solve can be done with
LOCK TABLES or atomic updates, ensuring that you never will get an automatic abort
from the server, which is a common problem with transactional database systems.

3. Even a transactional system can lose data if the server goes down. The difference
between different systems lies in just how small the time-lag is where they could lose
data. No system is 100% secure, only “secure enough.” Even Oracle, reputed to be
the safest of transactional database systems, is reported to sometimes lose data in such
situations.

To be safe with MySQL Server, whether or not using transactional tables, you only
need to have backups and have binary logging turned on. With this you can recover
from any situation that you could with any other transactional database system. It is
always good to have backups, regardless of which database system you use.

The transactional paradigm has its benefits and its drawbacks. Many users and application
developers depend on the ease with which they can code around problems where an abort
appears to be, or is necessary. However, even if you are new to the atomic operations
paradigm, or more familiar with transactions, do consider the speed benefit that non-
transactional tables can offer on the order of three to five times the speed of the fastest and
most optimally tuned transactional tables.

Chapter 1: General Information 47

In situations where integrity is of highest importance, MySQL Server offers transaction-
level reliability and integrity even for non-transactional tables. If you lock tables with LOCK
TABLES, all updates will stall until any integrity checks are made. If you obtain a READ LOCAL
lock (as opposed to a write lock) for a table that allows concurrent inserts at the end of the
table, reads are allowed, as are inserts by other clients. The new inserted records will not
be seen by the client that has the read lock until it releases the lock. With INSERT DELAYED,
you can queue inserts into a local queue, until the locks are released, without having the
client wait for the insert to complete. See Section 14.1.4.2 [INSERT DELAYED)], page 660.

“Atomic,” in the sense that we mean it, is nothing magical. It only means that you can
be sure that while each specific update is running, no other user can interfere with it, and
there will never be an automatic rollback (which can happen with transactional tables if
you are not very careful). MySQL Server also guarantees that there will not be any dirty
reads.

Following are some techniques for working with non-transactional tables:

e Loops that need transactions normally can be coded with the help of LOCK TABLES, and
you don’t need cursors to update records on the fly.
e To avoid using ROLLBACK, you can use the following strategy:
1. Use LOCK TABLES to lock all the tables you want to access.
2. Test the conditions that must be true before performing the update.
3. Update if everything is okay.
4. Use UNLOCK TABLES to release your locks.

This is usually a much faster method than using transactions with possible rollbacks,
although not always. The only situation this solution doesn’t handle is when someone
kills the threads in the middle of an update. In this case, all locks will be released but
some of the updates may not have been executed.

e You can also use functions to update records in a single operation. You can get a very
efficient application by using the following techniques:

e Modify columns relative to their current value.

e Update only those columns that actually have changed.

For example, when we are doing updates to some customer information, we update
only the customer data that has changed and test only that none of the changed data,
or data that depends on the changed data, has changed compared to the original row.
The test for changed data is done with the WHERE clause in the UPDATE statement. If
the record wasn’t updated, we give the client a message: “Some of the data you have
changed has been changed by another user.” Then we show the old row versus the new
row in a window so that the user can decide which version of the customer record to
use.

This gives us something that is similar to column locking but is actually even better
because we only update some of the columns, using values that are relative to their
current values. This means that typical UPDATE statements look something like these:

UPDATE tablename SET pay_back=pay_back+125;

UPDATE customer

48 MySQL Technical Reference for Version 5.0.0-alpha

SET
customer_date=’current_date’,
address=’new address’,
phone=’new phone’,
money_owed_to_us=money_owed_to_us-125
WHERE
customer_id=id AND address=’o0ld address’ AND phone=’o0ld phone’;

This is very efficient and works even if another client has changed the values in the
pay_back or money_owed_to_us columns.

e In many cases, users have wanted LOCK TABLES and/or ROLLBACK for the purpose of
managing unique identifiers. This can be handled much more efficiently without locking
or rolling back by using an AUTO_INCREMENT column and either the LAST_INSERT_ID()
SQL function or the mysql_insert_id() C API function. See Section 13.8.3 [Infor-
mation functions], page 637. See Section 21.2.3.32 [mysql_insert_id ()], page 944.
You can generally code around the need for row-level locking. Some situations really
do need it, and InnoDB tables support row-level locking. With MyISAM tables, you can
use a flag column in the table and do something like the following;:

UPDATE tbl_name SET row_flag=1 WHERE id=ID;

MySQL returns 1 for the number of affected rows if the row was found and row_flag
wasn’t already 1 in the original row.

You can think of it as though MySQL Server changed the preceding query to:
UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

1.8.5.4 Stored Procedures and Triggers

Stored procedures are implemented in MySQL version 5.0. See Chapter 20 [Stored Proce-
dures], page 903.

Triggers are scheduled for implementation in MySQL version 5.1. A “trigger” is effectively
a type of stored procedure, one that is invoked when a particular event occurs. For example,
you could set up a stored procedure that is triggered each time a record is deleted from
a transactional table, and that stored procedure automatically deletes the corresponding
customer from a customer table when all their transactions are deleted.

1.8.5.5 Foreign Keys

In MySQL Server 3.23.44 and up, the InnoDB storage engine supports checking of foreign
key constraints, including CASCADE, ON DELETE, and ON UPDATE. See Section 16.7.4 [InnoDB
foreign key constraints|, page 801.

For storage engines other than InnoDB, MySQL Server parses the FOREIGN KEY syntax in
CREATE TABLE statements, but does not use or store it. In the future, the implementation
will be extended to store this information in the table specification file so that it may
be retrieved by mysqldump and ODBC. At a later stage, foreign key constraints will be
implemented for MyISAM tables as well.

Foreign key enforcement offers several benefits to database developers:

Chapter 1: General Information 49

e Assuming proper design of the relationships, foreign key constraints make it more
difficult for a programmer to introduce an inconsistency into the database.

e Centralized checking of constraints by the database server makes it unnecessary to per-
form these checks on the application side. This eliminates the possibility that different
applications may not all check the constraints in the same way.

e Using cascading updates and deletes can simplify the application code.

e Properly designed foreign key rules aid in documenting relationships between tables.

Do keep in mind that these benefits come at the cost of additional overhead for the database
server to perform the necessary checks. Additional checking by the server affects perfor-
mance, which for some applications may be sufficiently undesirable as to be avoided if
possible. (Some major commercial applications have coded the foreign-key logic at the
application level for this reason.)

MySQL gives database developers the choice of which approach to use. If you don’t need
foreign keys and want to avoid the overhead associated with enforcing referential integrity,
you can choose another table type instead, such as MyISAM. (For example, the MyISAM
storage engine offers very fast performance for applications that perform only INSERT and
SELECT operations, because the inserts can be performed concurrently with retrievals. See
Section 7.3.2 [Table locking], page 441.)

If you choose not to take advantage of referential integrity checks, keep the following con-
siderations in mind:

e In the absence of server-side foreign key relationship checking, the application itself
must handle relationship issues. For example, it must take care to insert rows into
tables in the proper order, and to avoid creating orphaned child records. It must
also be able to recover from errors that occur in the middle of multiple-record insert
operations.

e If ON DELETE is the only referential integrity capability an application needs, note that
as of MySQL Server 4.0, you can use multiple-table DELETE statements to delete rows
from many tables with a single statement. See Section 14.1.1 [DELETE], page 652.

e A workaround for the lack of ON DELETE is to add the appropriate DELETE statement
to your application when you delete records from a table that has a foreign key. In
practice, this is often as quick as using foreign keys, and is more portable.

Be aware that the use of foreign keys can in some instances lead to problems:

e Foreign key support addresses many referential integrity issues, but it is still necessary
to design key relationships carefully to avoid circular rules or incorrect combinations
of cascading deletes.

e It is not uncommon for a DBA to create a topology of relationships that makes it
difficult to restore individual tables from a backup. (MySQL alleviates this difficulty
by allowing you to temporarily disable foreign key checks when reloading a table that
depends on other tables. See Section 16.7.4 [InnoDB foreign key constraints], page 801.
As of MySQL 4.1.1, mysqldump generates dump files that take advantage of this capa-
bility automatically when reloaded.)

Note that foreign keys in SQL are used to check and enforce referential integrity, not to
join tables. If you want to get results from multiple tables from a SELECT statement, you
do this by performing a join between them:

50 MySQL Technical Reference for Version 5.0.0-alpha

SELECT * FROM t1, t2 WHERE t1.id = t2.id;
See Section 14.1.7.1 [JOIN], page 675. See Section 3.6.6 [example-Foreign keys], page 212.

The FOREIGN KEY syntax without ON DELETE ... is often used by ODBC applications to
produce automatic WHERE clauses.

1.8.5.6 Views

Views are being implemented in the 5.0 version of MySQL Server. While still under de-
velopment, they are already available in the 5.0 BitKeeper tree and will be present in
binary releases from 5.0.1. Unnamed views (derived tables, a subquery in the FROM clause
of a SELECT) are already implemented in version 4.1. Unqualified union views (SELECT
... UNION SELECT ... are also available through the MERGE table feature. See Section 15.2
[MERGE], page 775.

Historically, MySQL Server has been most used in applications and on Web systems where
the application writer has full control over database usage. Usage has shifted over time, and
so we find that an increasing number of users now regard views as an important feature.

Views are useful for allowing users to access a set of relations (tables) as if it were a single
table, and limiting their access to just that. Views can also be used to restrict access
to rows (a subset of a particular table). For access control to columns, you can also use
the sophisticated privilege system in MySQL Server. See Section 5.5 [Privilege system],
page 292.

Many DBMS don’t allow updates to a view. Instead, you have to perform the updates on
the individual tables. In designing an implementation of views, our goal, as much as is
possible within the confines of SQL, is full compliance with “Codd’s Rule #6” for relational
database systems: All views that are theoretically updatable, should in practice also be
updatable.

1.8.5.7 ‘--" as the Start of a Comment

Some other SQL databases use ‘-==’ to start comments. MySQL Server uses ‘#’ as the start
comment character. You can also use the C comment style /* this is a comment */ with
MySQL Server. See Section 10.5 [Comments], page 523.

MySQL Server 3.23.3 and above support the ‘==’ comment style, provided the comment
is followed by a space (or by a control character such as a newline). The requirement for
a space is to prevent problems with automatically generated SQL queries that have used
something like the following code, where we automatically insert the value of the payment
for !'payment!:

UPDATE account SET credit=credit-!payment!
Think about what happens if the value of payment is a negative value such as -1:
UPDATE account SET credit=credit--1

credit--1 is a legal expression in SQL, but if -- is interpreted as the start of a comment,
part of the expression is discarded. The result is a statement that has a completely different
meaning than intended:

Chapter 1: General Information 51

UPDATE account SET credit=credit

The statement produces no change in value at all! This illustrates that allowing comments
to start with ‘==’ can have serious consequences.

Using our implementation of this method of commenting in MySQL Server 3.23.3 and up,
credit--1 is actually safe.

Another safe feature is that the mysql command-line client removes all lines that start with
(__>»

The following information is relevant only if you are running a MySQL version earlier than
3.23.3:

If you have an SQL program in a text file that contains ‘-=" comments, you should use the
replace utility as follows to convert the comments to use ‘#’ characters:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
| mysql db_name

instead of the usual:
shell> mysql db_name < text-file-with-funny-comments.sql

You can also edit the command file “in place” to change the ‘==’ comments to ‘#’ comments:
shell> replace " —-" " #" -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace " #" " --" -- text-file-with-funny-comments.sql

1.8.6 How MySQL Deals with Constraints

MySQL allows you to work with both transactional tables that allow rollback and non-
transactional tables that do not, so constraint handling is a bit different in MySQL than in
other databases.

We have to handle the case when you have updated a lot of rows in a non-transactional
table that cannot roll back when an error occurs.

The basic philosophy is to try to give an error for anything that we can detect at compile
time but try to recover from any errors we get at runtime. We do this in most cases, but
not yet for all. See Section 1.6.4 [TODO future], page 28.

The options MySQL has when an error occurs are to stop the statement in the middle or
to recover as well as possible from the problem and continue.

The following sections describe what happens for the different types of constraints.

1.8.6.1 Constraint PRIMARY KEY / UNIQUE

Normally you will get an error when you try to INSERT or UPDATE a row that causes a
primary key, unique key, or foreign key violation. If you are using a transactional storage
engine such as InnoDB, MySQL will automatically roll back the transaction. If you are
using a non-transactional storage engine, MySQL will stop at the incorrect row and leave
any remaining rows unprocessed.

To make life easier, MySQL supports an IGNORE keyword for most commands that can
cause a key violation (such as INSERT IGNORE and UPDATE IGNORE). In this case, MySQL will

52 MySQL Technical Reference for Version 5.0.0-alpha

ignore any key violation and continue with processing the next row. You can get information
about what MySQL did with the mysql_info() C API function. See Section 21.2.3.30
[mysql_info ()], page 943. In MySQL 4.1 and up, you also can use the SHOW WARNINGS
statement. See Section 14.5.3.20 [SHOW WARNINGS], page 748.

Note that, for the moment, only InnoDB tables support foreign keys. See Section 16.7.4 [Inn-
oDB foreign key constraints], page 801. Foreign key support in MyISAM tables is scheduled
for implementation in MySQL 5.1.

1.8.6.2 Constraint NOT NULL and DEFAULT Values

To be able to support easy handling of non-transactional tables, all columns in MySQL
have default values.

If you insert an “incorrect” value into a column, such as a NULL into a NOT NULL column or
a too-large numerical value into a numerical column, MySQL sets the column to the “best
possible value” instead of producing an error:

e If you try to store a value outside the range in a numerical column, MySQL Server
instead stores zero, the smallest possible value, or the largest possible value in the
column.

e For strings, MySQL stores either the empty string or the longest possible string that
can be in the column.

e If you try to store a string that doesn’t start with a number into a numerical column,
MySQL Server stores 0.

e If you try to store NULL into a column that doesn’t take NULL values, MySQL Server
stores 0 or *” (the empty string) instead. This last behavior can, for single-row inserts,
be changed when MySQL is built by using the -DDONT_USE_DEFAULT_FIELDS compile
option.) See Section 2.3.2 [configure options|, page 103. This causes INSERT state-
ments to generate an error unless you explicitly specify values for all columns that
require a non-NULL value.

e MySQL allows you to store some incorrect date values into DATE and DATETIME columns
(like ?2000-02-31 or ’2000-02-00’). The idea is that it’s not the job of the SQL
server to validate dates. If MySQL can store a date value and retrieve exactly the same
value, MySQL stores it as given. If the date is totally wrong (outside the server’s ability
to store it), the special date value >0000-00-00 is stored in the column instead.

The reason for the preceding rules is that we can’t check these conditions until the query
has begun executing. We can’t just roll back if we encounter a problem after updating
a few rows, because the table type may not support rollback. The option of terminating
the statement is not that good; in this case, the update would be “half done,” which is
probably the worst possible scenario. In this case, it’s better to “do the best you can” and
then continue as if nothing happened.

This means that you should generally not use MySQL to check column content. Instead,
the application should ensure that it passes only legal values to MySQL.

In MySQL 5.0, we plan to improve this by providing warnings when automatic column
conversions occur, plus an option to let you roll back statements that attempt to perform a
disallowed column value assignment, as long as the statement uses only transactional tables.

Chapter 1: General Information 53

1.8.6.3 Constraint ENUM and SET

In MySQL 4.x, ENUM is not a real constraint, but is a more efficient way to define columns
that can contain only a given set of values. This is for the same reasons that NOT NULL is
not honored. See Section 1.8.6.2 [constraint NOT NULLJ, page 52.

If you insert an incorrect value into an ENUM column, it is set to the reserved enumeration
value of 0, which is displayed as an empty string in string context. See Section 12.4.3
[ENUM], page 574.

If you insert an incorrect value into a SET column, the incorrect value is ignored. For
example, if the column can contain the values ’a’, ’b’, and ’c’, an attempt to assign
’a,x,b,y’ results in a value of *a,b’. See Section 12.4.4 [SET], page 575.

1.8.7 Known Errors and Design Deficiencies in MySQL

1.8.7.1 Errors in 3.23 Fixed in a Later MySQL Version

The following known errors or bugs are not fixed in MySQL 3.23 because fixing them would
involve changing a lot of code that could introduce other even worse bugs. The bugs are
also classified as “not fatal” or “bearable.”

e One should avoid having space at end of field names as this can cause weird behaviour.
(Fixed in MySQL 4.0). (Bug #4196)

e You can get a deadlock (hung thread) if you use LOCK TABLE to lock multiple tables
and then in the same connection use DROP TABLE to drop one of them while another
thread is trying to lock it. (To break the deadlock, you can use KILL to terminate any
of the threads involved.) This issue is resolved as of MySQL 4.0.12.

e SELECT MAX(key_column) FROM t1,t2,t3... where one of the tables are empty
doesn’t return NULL but instead returns the maximum value for the column. This
issue is resolved as of MySQL 4.0.11.

e DELETE FROM heap_table without a WHERE clause doesn’t work on a locked HEAP table.

1.8.7.2 Errors in 4.0 Fixed in a Later MySQL Version

The following known errors or bugs are not fixed in MySQL 4.0 because fixing them would
involve changing a lot of code that could introduce other even worse bugs. The bugs are
also classified as “not fatal” or “bearable.”

e In a UNION, the first SELECT determines the type, max_length, and NULL properties for
the resulting columns. This issue is resolved as of MySQL 4.1.1; the property values
are based on the rows from all UNION parts.

e In DELETE with many tables, you can’t refer to tables to be deleted through an alias.
This is fixed as of MySQL 4.1.

e You cannot mix UNION ALL and UNION DISTINCT in the same query. If you use ALL for

one UNION, it is used for all of them. This is fixed as of MySQL 4.1.2. The rules for
mixed UNION types are given in Section 14.1.7.2 [UNION], page 677.

o4

MySQL Technical Reference for Version 5.0.0-alpha

1.8.7.3 Open Bugs and Design Deficiencies in MySQL

The following problems are known and fixing them is a high priority:

Even if you are using lower_case_table_names=2 (which enables MySQL to remember
the used case for databases and table names) MySQL will not on case insensitive
systems remember the used case for database names for the function DATABASE() or in
various logs.

Dropping a FOREIGN KEY constraint doesn’t work in replication because the constraint
may have another name on the slave.

REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE
CASCADE.

DISTINCT with ORDER BY doesn’t work inside GROUP_CONCAT () if you don’t use all and
only those columns that are in the DISTINCT list.

GROUP_CONCAT() doesn’t work with BLOB/TEXT columns when you use DISTINCT
or ORDER BY inside GROUP_CONCAT(). To work around this limitation, use
MID(expr,1,255) instead.

If one user has a long-running transaction and another user drops a table that is
updated in the transaction, there is small chance that the binary log may contain the
DROP TABLE command before the table is used in the transaction itself. We plan to fix
this in 5.0 by having the DROP TABLE wait until the table is not used in any transaction.

When inserting a big integer value (between 2763 and 2°64—1) into a decimal/string
column, it is inserted as a negative value because the number is evaluated in a signed
integer context. We plan to fix this in MySQL 4.1.

FLUSH TABLES WITH READ LOCK does not block CREATE TABLE or COMMIT, which may
cause a problem with the binary log position when doing a full backup of tables and
the binary log.

ANALYZE TABLE on a BDB table may in some cases make the table unusable until you
restart mysqld. If this happens, you will see errors of the following form in the MySQL
error file:

001207 22:07:56 bdb: log_flush: LSN past current end-of-log
MySQL accepts parentheses in the FROM clause of a SELECT statement, but silently
ignores them. The reason for not giving an error is that many clients that automatically
generate queries add parentheses in the FROM clause even where they are not needed.
Concatenating many RIGHT JOINS or combining LEFT and RIGHT join in the same query
may not give a correct answer because MySQL only generates NULL rows for the table
preceding a LEFT or before a RIGHT join. This will be fixed in 5.0 at the same time we
add support for parentheses in the FROM clause.

Don’t execute ALTER TABLE on a BDB table on which you are running multiple-statement
transactions until all those transactions complete. (The transaction will probably be
ignored.)

ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables for
which you are using INSERT DELAYED.

Doing a LOCK TABLE ... and FLUSH TABLES ... doesn’t guarantee that there isn’t a
half-finished transaction in progress on the table.

Chapter 1: General Information 55

e BDB tables are a bit slow to open. If you have many BDB tables in a database, it will
take a long time to use the mysql client on the database if you are not using the -A
option or if you are using rehash. This is especially notable when you have a large
table cache.

e Replication uses query-level logging: The master writes the executed queries to the
binary log. This is a very fast, compact, and efficient logging method that works
perfectly in most cases. Although we have never heard of it actually occurring, it is
theoretically possible for the data on the master and slave to become different if a query
is designed in such a way that the data modification is non-deterministic; that is, left
to the will of the query optimizer. (That generally is not a good practice anyway, even
outside of replication!) For example:

— CREATE ... SELECT or INSERT ... SELECT statements that insert zero or NULL
values into an AUTO_INCREMENT column.

— DELETE if you are deleting rows from a table that has foreign keys with ON DELETE
CASCADE properties.

— REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values
in the inserted data.

If and only if all these queries have no ORDER BY clause guaranteeing a deterministic
order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows
in a different order (which will result in a row having different ranks, hence getting a
different number in the AUTO_INCREMENT column), depending on the choices made by
the optimizers on the master and slave. A query will be optimized differently on the
master and slave only if:

— The files used by the two queries are not exactly the same; for example, OPTIMIZE
TABLE was run on the master tables and not on the slave tables. (To fix this,
OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE are written to the binary log
as of MySQL 4.1.1).

— The table is stored using a different storage engine on the master than on the
slave. (It is possible to use different storage engines on the master and slave. For
example, you can use InnoDB on the master, but MyISAM on the slave if the slave
has less available disk space.)

— MySQL buffer sizes (key_buffer_size, and so on) are different on the master and
slave.

— The master and slave run different MySQL versions, and the optimizer code differs
between these versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem in all cases is to add an ORDER BY clause to such
non-deterministic queries to ensure that the rows are always stored or modified in the
same order. In future MySQL versions, we will automatically add an ORDER BY clause
when needed.

The following problems are known and will be fixed in due time:

e Log filenames are based on the server hostname (if you don’t specify a filename with the
startup option). For now you have to use options like —~-log-bin=0ld_host_name-bin

56

MySQL Technical Reference for Version 5.0.0-alpha

if you change your hostname to something else. Another option is to just rename the
old files to reflect your hostname change. See Section 5.2.1 [Server options|, page 239.
mysqlbinlog will not delete temporary files left after a LOAD DATA INFILE command.
See Section 8.5 [mysqlbinlog], page 489.

RENAME doesn’t work with TEMPORARY tables or tables used in a MERGE table.

When using the RPAD () function in a query that has to be resolved by using a temporary
table, all resulting strings will have rightmost spaces removed. This is an example of
such a query:

SELECT RPAD(t1.columnl, 50, ’> ’) AS f2, RPAD(t2.column2, 50, ’> ’) AS fill

FROM tablel as t1 LEFT JOIN table2 AS t2 ON tl.record=t2.joinID
ORDER BY t2.record;

The final result of this bug is that you will not be able to get spaces on the right side of
the resulting values. The problem also occurs for any other string function that adds
spaces to the right.

The reason for this is due to the fact that HEAP tables, which are used first for temporary
tables, are not capable of handling VARCHAR columns.

This behavior exists in all versions of MySQL. It will be fixed in one of the 4.1 series
releases.

Due to the way table definition files are stored, you cannot use character 255
(CHAR(255)) in table names, column names, or enumerations. This is scheduled to be
fixed in version 5.1 when we have new table definition format files.

When using SET CHARACTER SET, you can’t use translated characters in database, table,
and column names.

You can’t use ‘_’ or ‘%’ with ESCAPE in LIKE ... ESCAPE.

If you have a DECIMAL column in which the same number is stored in different formats
(for example, +01.00, 1.00, 01.00), GROUP BY may regard each value as a different
value.

You cannot build the server in another directory when using MIT-pthreads. Because
this requires changes to MIT-pthreads, we are not likely to fix this. See Section 2.3.5
[MIT-pthreads|, page 112.

BLOB values can’t “reliably” be used in GROUP BY or ORDER BY or DISTINCT. Only
the first max_sort_length bytes are used when comparing BLOB values in these cases.
The default value of max_sort_length value is 1024. It can be changed at server
startup time. A workaround for most cases is to use a substring. For example: SELECT
DISTINCT LEFT(blob_col,2048) FROM tbl_name.

Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long).
Which precision you get depends on the function. The general rule is that bit functions
are done with BIGINT precision, IF and ELT() with BIGINT or DOUBLE precision, and
the rest with DOUBLE precision. You should try to avoid using unsigned long long values
if they resolve to be bigger than 63 bits (9223372036854775807) for anything other than
bit fields. MySQL Server 4.0 has better BIGINT handling than 3.23.

All string columns, except BLOB and TEXT columns, automatically have all trailing
spaces removed when retrieved. For CHAR types, this is okay. The bug is that in
MySQL Server, VARCHAR columns are treated the same way.

Chapter 1: General Information 57

e You can have only up to 255 ENUM and SET columns in one table.

e In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and
SET columns by their string value rather than by the string’s relative position in the
set.

e mysqld_safe redirects all messages from mysqld to the mysqld log. One problem with
this is that if you execute mysqladmin refresh to close and reopen the log, stdout
and stderr are still redirected to the old log. If you use --log extensively, you should
edit mysqld_safe to log to ‘host_name.err’ instead of ‘host_name.log’ so that you
can easily reclaim the space for the old log by deleting the old one and executing
mysqladmin refresh.

e In the UPDATE statement, columns are updated from left to right. If you refer to an
updated column, you get the updated value instead of the original value. For example,
the following statement increments KEY by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

e You can refer to multiple temporary tables in the same query, but you cannot refer to
any given temporary table more than once. For example, the following doesn’t work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can’t reopen table: ’temp_table’

e The optimizer may handle DISTINCT differently when you are using “hidden” columns
in a join than when you are not. In a join, hidden columns are counted as part of the
result (even if they are not shown), whereas in normal queries, hidden columns don’t
participate in the DISTINCT comparison. We will probably change this in the future to
never compare the hidden columns when executing DISTINCT.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
FROM band_downloads,band_mp3
WHERE band_downloads.userid = 9
AND band_mp3.id = band_downloads.mp3id
ORDER BY band_downloads.id DESC;

In the second case, you might in MySQL Server 3.23.x get two identical rows in the
result set (because the values in the hidden id column may differ).

Note that this happens only for queries where you don’t have the ORDER BY columns in
the result.

e Because MySQL Server allows you to work with table types that don’t support trans-
actions, and thus can’t roll back data, some things behave a little differently in MySQL
Server than in other SQL servers. This is just to ensure that MySQL Server never
needs to do a rollback for an SQL statement. This may be a little awkward at times
because column values must be checked in the application, but this will actually give
you a nice speed increase because it allows MySQL Server to do some optimizations
that otherwise would be very hard to do.

o8

MySQL Technical Reference for Version 5.0.0-alpha

If you set a column to an incorrect value, MySQL Server will, instead of doing a
rollback, store the “best possible value” in the column. For information about how this
occurs, see Section 1.8.6 [Constraints|, page 51.

If you execute a PROCEDURE on a query that returns an empty set, in some cases the
PROCEDURE will not transform the columns.

Creation of a table of type MERGE doesn’t check whether the underlying tables are of
compatible types.

If you use ALTER TABLE first to add a UNIQUE index to a table used in a MERGE table
and then to add a normal index on the MERGE table, the key order will be different for
the tables if there was an old key that was not unique in the table. This is because
ALTER TABLE puts UNIQUE indexes before normal indexes to be able to detect duplicate
keys as early as possible.

The following are known bugs in earlier versions of MySQL:

e In the following case you can get a core dump:

— Delayed insert handler has pending inserts to a table.
— LOCK TABLE with WRITE.
— FLUSH TABLES.

e Before MySQL Server 3.23.2, an UPDATE that updated a key with a WHERE on the same

key may have failed because the key was used to search for records and the same row
may have been found multiple times:

UPDATE tbl_name SET KEY=KEY+1 WHERE KEY > 100;
A workaround is to use:
UPDATE tbl_name SET KEY=KEY+1 WHERE KEY+0 > 100;

This will work because MySQL Server will not use an index on expressions in the WHERE
clause.

Before MySQL Server 3.23, all numeric types were treated as fixed-point fields. That
means that you had to specify how many decimals a floating-point field should have.
All results were returned with the correct number of decimals.

For information about platform-specific bugs, see the installation and porting instructions
in Section 2.6 [Operating System Specific Notes], page 148 and Appendix D [Porting],
page 1277.

Chapter 2: Installing MySQL 59

2 Installing MySQL

This chapter describes how to obtain and install MySQL:

1.

Determine whether your platform is supported. Please note that not all supported
systems are equally good for running MySQL on them. On some it is much more
robust and efficient than others. See Section 2.1.1 [Which OS], page 60 for details.

Choose which distribution to install. Several versions of MySQL are available, and
most are available in several distribution formats. You can choose from pre-packaged
distributions containing binary (precompiled) programs or source code. When in doubt,
use a binary distribution. We also provide public access to our current source tree for
those who want to see our most recent developments and help us test new code. To
determine which version and type of distribution you should use, see Section 2.1.2
[Which version|, page 62.

Download the distribution that you want to install. For a list of sites from which you
can obtain MySQL, see Section 2.1.3 [Getting MySQL], page 73. You can verify the
integrity of the distribution using the instructions in Section 2.1.4 [Verifying Package
Integrity|, page 73.

Install the distribution. To install MySQL from a binary distribution, use the instruc-
tions in Section 2.2 [Quick Standard Installation], page 77. To install MySQL from a
source distribution or from the current development source tree, use the instructions
in Section 2.3 [Installing source], page 100.

Note: If you plan to upgrade an existing version of MySQL to a newer version rather
than installing MySQL for the first time, see Section 2.5 [Upgrade], page 132 for in-
formation about upgrade procedures and about issues that you should consider before
upgrading.

If you encounter installation difficulties, see Section 2.6 [Operating System Specific
Notes], page 148 for information on solving problems for particular platforms.

Perform any necessary post-installation setup. After installing MySQL, read Sec-
tion 2.4 [Post-installation], page 117. This section contains important information
about making sure the MySQL server is working properly. It also describes how to
secure the initial MySQL user accounts, which have no passwords until you assign
passwords. The section applies whether you install MySQL using a binary or source
distribution.

If you want to run the MySQL benchmark scripts, Perl support for MySQL must be
available. See Section 2.7 [Perl support|, page 177.

2.1 General Installation Issues

Before installing MySQL, you should do the following;:

1.
2.
3.

Determine whether or not MySQL runs on your platform.
Choose a distribution to install.

Download the distribution and verify its integrity.

60 MySQL Technical Reference for Version 5.0.0-alpha

This section contains the information necessary to carry out these steps. After doing so,
you can use the instructions in later sections of the chapter to install the distribution that
you choose.

2.1.1 Operating Systems Supported by MySQL

This section lists the operating systems on which you can expect to be able to run MySQL.

We use GNU Autoconf, so it is possible to port MySQL to all modern systems that have a
C++ compiler and a working implementation of POSIX threads. (Thread support is needed
for the server. To compile only the client code, the only requirement is a C++ compiler.) We
use and develop the software ourselves primarily on Linux (SuSE and Red Hat), FreeBSD,
and Sun Solaris (Versions 8 and 9).

MySQL has been reported to compile successfully on the following combinations of operating
system and thread package. Note that for many operating systems, native thread support
works only in the latest versions.

e AIX 4.x, 5.x with native threads. See Section 2.6.5.3 [[BM-AIX], page 165.

e Amiga.

e BSDI 2.x with the MIT-pthreads package. See Section 2.6.4.5 [BSDI], page 162.

e BSDI 3.0, 3.1 and 4.x with native threads. See Section 2.6.4.5 [BSDI], page 162.

e Digital Unix 4.x with native threads. See Section 2.6.5.5 [Alpha-DEC-UNIX], page 167.
e FreeBSD 2.x with the MIT-pthreads package. See Section 2.6.4.1 [FreeBSD]|, page 160.
e FreeBSD 3.x and 4.x with native threads. See Section 2.6.4.1 [FreeBSD], page 160.

e FreeBSD 4.x with LinuxThreads. See Section 2.6.4.1 [FreeBSD], page 160.

e HP-UX 10.20 with the DCE threads or the MIT-pthreads package. See Section 2.6.5.1
[HP-UX 10.20], page 163.

e HP-UX 11.x with the native threads. See Section 2.6.5.2 [HP-UX 11.x], page 164.

e Linux 2.0+ with LinuxThreads 0.7.1+ or glibc 2.0.7+ for various CPU architectures.
See Section 2.6.1 [Linux], page 148.

e Mac OS X. See Section 2.6.2 [Mac OS X], page 156.

e NetBSD 1.3/1.4 Intel and NetBSD 1.3 Alpha (requires GNU make). See Section 2.6.4.2
[NetBSD], page 162.

e Novell NetWare 6.0. See Section 2.2.4 [NetWare installation|, page 95.

e OpenBSD > 2.5 with native threads. OpenBSD < 2.5 with the MIT-pthreads package.
See Section 2.6.4.3 [OpenBSD], page 162.

e OS/2 Warp 3, FixPack 29 and OS/2 Warp 4, FixPack 4. See Section 2.6.6 [0S/2],
page 177.

e SCO OpenServer with a recent port of the FSU Pthreads package. See Section 2.6.5.8
[SCO], page 171.

e SCO UnixWare 7.1.x. See Section 2.6.5.9 [SCO UnixWare|, page 175.
e SGI Irix 6.x with native threads. See Section 2.6.5.7 [SGI-Irix|, page 170.

e Solaris 2.5 and above with native threads on SPARC and x86. See Section 2.6.3 [So-
laris|, page 156.

Chapter 2: Installing MySQL 61

e SunOS 4.x with the MIT-pthreads package. See Section 2.6.3 [Solaris], page 156.
e Tru64 Unix. See Section 2.6.5.5 [Alpha-DEC-UNIX], page 167.
e Windows 9x, Me, NT, 2000, and XP. See Section 2.2.1 [Windows installation], page 78.

Not all platforms are equally well-suited for running MySQL. How well a certain platform is
suited for a high-load mission-critical MySQL server is determined by the following factors:

e General stability of the thread library. A platform may have an excellent reputation
otherwise, but MySQL will be only as stable as the thread library if that library is
unstable in the code that is called by MySQL, even if everything else is perfect.

e The capability of the kernel and the thread library to take advantage of symmetric
multi-processor (SMP) systems. In other words, when a process creates a thread, it
should be possible for that thread to run on a different CPU than the original process.

e The capability of the kernel and the thread library to run many threads that acquire
and release a mutex over a short critical region frequently without excessive context
switches. If the implementation of pthread_mutex_lock() is too anxious to yield CPU
time, this will hurt MySQL tremendously. If this issue is not taken care of, adding extra
CPUs will actually make MySQL slower.

e General filesystem stability and performance.

e If your tables are big, the ability of the filesystem to deal with large files at all and to
deal with them efficiently.

e Our level of expertise here at MySQL AB with the platform. If we know a platform
well, we enable platform-specific optimizations and fixes at compile time. We can also
provide advice on configuring your system optimally for MySQL.

e The amount of testing we have done internally for similar configurations.

e The number of users that have successfully run MySQL on the platform in similar
configurations. If this number is high, the chances of encountering platform-specific
surprises are much smaller.

Based on the preceding criteria, the best platforms for running MySQL at this point are x86
with SuSE Linux using a 2.4 kernel, and ReiserF'S (or any similar Linux distribution) and
SPARC with Solaris (2.7-9). FreeBSD comes third, but we really hope it will join the top
club once the thread library is improved. We also hope that at some point we will be able
to include into the top category all other platforms on which MySQL currently compiles
and runs okay, but not quite with the same level of stability and performance. This will
require some effort on our part in cooperation with the developers of the operating system
and library components that MySQL depends on. If you are interested in improving one of
those components, are in a position to influence its development, and need more detailed
instructions on what MySQL needs to run better, send an email message to the MySQL
internals mailing list. See Section 1.7.1.1 [Mailing-list], page 32.

Please note that the purpose of the preceding comparison is not to say that one operating
system is better or worse than another in general. We are talking only about choosing
an OS for the specific purpose of running MySQL. With this in mind, the result of this
comparison would be different if we considered more factors. In some cases, the reason one
OS is better than the other could simply be that we have been able to put more effort into
testing and optimizing for a particular platform. We are just stating our observations to
help you decide which platform to use for running MySQL.

62 MySQL Technical Reference for Version 5.0.0-alpha

2.1.2 Choosing Which MySQL Distribution to Install

When preparing to install MySQL, you should decide which version to use. MySQL devel-
opment occurs in several release series, and you can pick the one that best fits your needs.
After deciding which version to install, you can choose a distribution format. Releases are
available in binary or source format.

2.1.2.1 Choosing Which Version of MySQL to Install

The first decision to make is whether you want to use a production (stable) release or a
development release. In the MySQL development process, multiple release series co-exist,
each at a different stage of maturity:

e MySQL 5.0 is the newest development release series and is under very active develop-
ment for new features. Until recently it was available only in preview form from the
BitKeeper source repository. An early alpha release has now been issued to allow more
widespread testing.

e MySQL 4.1 is a development release series to which major new features have been
added. It is still at beta status. Sources and binaries are available for use and testing
on development systems.

e MySQL 4.0 is the current stable (production-quality) release series. New releases are
issued for bugfixes. No new features are added that could diminish the code stability.

e MySQL 3.23 is the old stable (production-quality) release series. This series is retired,
so new releases are issued only to fix critical bugs.

We don’t believe in a complete freeze, as this also leaves out bugfixes and things that “must
be done.” “Somewhat frozen” means that we may add small things that “almost surely will
not affect anything that’s already working.” Naturally, relevant bugfixes from an earlier
series propagate to later series.

Normally, if you are beginning to use MySQL for the first time or trying to port it to some
system for which there is no binary distribution, we recommend going with the production
release series. Currently this is MySQL 4.0. All MySQL releases, even those from devel-
opment series, are checked with the MySQL benchmarks and an extensive test suite before
being issued.

If you are running an old system and want to upgrade, but don’t want to take the chance of
having a non-seamless upgrade, you should upgrade to the latest version in the same release
series you are using (where only the last part of the version number is newer than yours).
We have tried to fix only fatal bugs and make small, relatively safe changes to that version.

If you want to use new features not present in the production release series, you can use
a version from a development series. Note that development releases are not as stable as
production releases.

If you want to use the very latest sources containing all current patches and bugfixes, you
can use one of our BitKeeper repositories. These are not “releases” as such, but are available
as previews of the code on which future releases will be based.

The MySQL naming scheme uses release names that consist of three numbers and a suffix;
for example, mysql-4.1.2-alpha. The numbers within the release name are interpreted

like this:

Chapter 2: Installing MySQL 63

e The first number (4) is the major version and also describes the file format. All Version
4 releases have the same file format.

e The second number (1) is the release level. Taken together, the major version and
release level constitute the release series number.

e The third number (2) is the version number within the release series. This is incre-
mented for each new release. Usually you want the latest version for the series you
have chosen.

For each minor update, the last number in the version string is incremented. When there are
major new features or minor incompatibilities with previous versions, the second number
in the version string is incremented. When the file format changes, the first number is
increased.

Release names also include a suffix to indicates the stability level of the release. Releases
within a series progress through a set of suffixes to indicate how the stability level improves.
The possible suffixes are:

e alpha indicates that the release contains some large section of new code that hasn’t
been 100% tested. Known bugs (usually there are none) should be documented in the
News section. See Appendix C [News|, page 1106. There are also new commands and
extensions in most alpha releases. Active development that may involve major code
changes can occur in an alpha release, but everything will be tested before issuing a
release. For this reason, there should be no known bugs in any MySQL release.

e Dbeta means that all new code has been tested. No major new features that could cause
corruption in old code are added. There should be no known bugs. A version changes
from alpha to beta when there haven’t been any reported fatal bugs within an alpha
version for at least a month and we have no plans to add any features that could make
any old command unreliable.

e gamma is a beta that has been around a while and seems to work fine. Only minor fixes
are added. This is what many other companies call a release.

e If there is no suffix, it means that the version has been run for a while at many different
sites with no reports of bugs other than platform-specific bugs. Only critical bugfixes
are applied to the release. This is what we call a production (stable) release.

MySQL uses a naming scheme that is slightly different from most other products. In general,
it’s relatively safe to use any version that has been out for a couple of weeks without being
replaced with a new version within the release series.

All releases of MySQL are run through our standard tests and benchmarks to ensure that
they are relatively safe to use. Because the standard tests are extended over time to check
for all previously found bugs, the test suite keeps getting better.

All releases have been tested at least with:

An internal test suite
The ‘mysql-test’ directory contains an extensive set of test cases. We run
these tests for virtually every server binary. See Section 23.1.2 [MySQL test
suite|, page 1050 for more information about this test suite.

64 MySQL Technical Reference for Version 5.0.0-alpha

The MySQL benchmark suite
This suite runs a range of common queries. It is also a test to see whether the
latest batch of optimizations actually made the code faster. See Section 7.1.4
[MySQL Benchmarks], page 416.

The crash-me test
This test tries to determine what features the database supports and what
its capabilities and limitations are. See Section 7.1.4 [MySQL Benchmarks],
page 416.

Another test is that we use the newest MySQL version in our internal production environ-
ment, on at least one machine. We have more than 100GB of data to work with.

2.1.2.2 Choosing a Distribution Format

After choosing which version of MySQL to install, you should decide whether to use a
binary distribution or a source distribution. In most cases, you should probably use a
binary distribution, if one exists for your platform. Binary distributions are available in
native format for many platforms, such as RPM files for Linux or DMG package installers
for Mac OS X. Distributions also are available as Zip archives or compressed tar files.

Reasons to choose a binary distribution include the following:
e Binary distributions generally are easier to install than source distributions.

e To satisfy different user requirements, we provide two different binary versions: one
compiled with the non-transactional storage engines (a small, fast binary), and one
configured with the most important extended options like transaction-safe tables. Both
versions are compiled from the same source distribution. All native MySQL clients can
connect to servers from either MySQL version.

The extended MySQL binary distribution is marked with the -max suffix and is config-
ured with the same options as mysqld-max. See Section 5.1.2 [mysqld-max]|, page 230.

If you want to use the MySQL-Max RPM, you must first install the standard MySQL-
server RPM.
Under some circumstances, you probably will be better off installing MySQL from a source
distribution:

e You want to install MySQL at some explicit location. The standard binary distributions
are “ready to run” at any place, but you may want to have even more flexibility to
place MySQL components where you want.

e You want to configure mysqld with some extra features that are not included in the
standard binary distributions. Here is a list of the most common extra options that
you may want to use:

e --with-innodb (default for MySQL 4.0 and up)

e ——with-berkeley-db (not available on all platforms)
e —-with-raid

e ——with-libwrap

e --with-named-z-1libs (this is done for some of the binaries)

Chapter 2: Installing MySQL 65

e —-with-debug[=fulll

You want to configure mysqld without some features that are included in the standard
binary distributions. For example, distributions normally are compiled with support
for all character sets. If you want a smaller MySQL server, you can recompile it with
support for only the character sets you need.

You have a special compiler (such as pgcc) or want to use compiler options that are
better optimized for your processor. Binary distributions are compiled with options
that should work on a variety of processors from the same processor family.

You want to use the latest sources from one of the BitKeeper repositories to have access
to all current bugfixes. For example, if you have found a bug and reported it to the
MySQL development team, the bugfix will be committed to the source repository and
you can access it there. The bugfix will not appear in a release until a release actually
is issued.

You want to read (or modify) the C and C++ code that makes up MySQL. For this
purpose, you should get a source distribution, because the source code is always the
ultimate manual.

Source distributions contain more tests and examples than binary distributions.

2.1.2.3 How and When Updates Are Released

MySQL is evolving quite rapidly here at MySQL AB and we want to share new developments
with other MySQL users. We try to make a release when we have very useful features that
others seem to have a need for.

We also try to help out users who request features that are easy to implement. We take note
of what our licensed users want to have, and we especially take note of what our extended
email-supported customers want and try to help them out.

No one has to download a new release. The News section will tell you if the new release
has something you really want. See Appendix C [News], page 1106.

We use the following policy when updating MySQL:

Releases are issued within each series. For each release, the last number in the version
is one more than the previous release within the same series.

Production (stable) releases are meant to appear about 1-2 times a year. However, if
small bugs are found, a release with only bugfixes will be issued.

Working releases/bugfixes to old releases are meant to appear about every 4-8 weeks.

Binary distributions for some platforms are made by us for major releases. Other
people may make binary distributions for other systems, but probably less frequently.

We make fixes available as soon as we have identified and corrected small or non-critical
but annoying bugs. The fixes are available immediately from our public BitKeeper
repositories, and will be included in the next release.

If by any chance a fatal bug is found in a release, we will make a new release as soon
as possible. (We would like other companies to do this, too!)

66 MySQL Technical Reference for Version 5.0.0-alpha

2.1.2.4 Release Philosophy—No Known Bugs in Releases

We put a lot of time and effort into making our releases bug-free. To our knowledge, we have
not released a single MySQL version with any known “fatal” repeatable bugs. (A “fatal”
bug is something that crashes MySQL under normal usage, produces incorrect answers for
normal queries, or has a security problem.)

We have documented all open problems, bugs, and issues that are dependent on design
decisions. See Section 1.8.7 [Bugs|, page 53.

Our aim is to fix everything that is fixable without risk of making a stable MySQL version
less stable. In certain cases, this means we can fix an issue in the development versions, but
not in the stable (production) version. Naturally, we document such issues so that users
are aware of them.

Here is a description of how our build process works:

e We monitor bugs from our customer support list, the bugs database at
http://bugs.mysql.com/, and the MySQL external mailing lists.

e All reported bugs for live versions are entered into the bugs database.

e When we fix a bug, we always try to make a test case for it and include it into our test
system to ensure that the bug will never recur without being detected. (About 90% of
all fixed bugs have a test case.)

o We create test cases for all new features we add to MySQL.

e Before we start to build a new MySQL release, we ensure that all reported repeatable
bugs for the MySQL version (3.23.x, 4.0.x, etc) are fixed. If something is impossible to
fix (due to some internal design decision in MySQL), we document this in the manual.
See Section 1.8.7 [Bugs], page 53.

e We do a build on all platforms for which we support binaries (15+ platforms) and run
our test suite and benchmark suite on all of them.

e We will not publish a binary for a platform for which the test or benchmark suite fails.
If the problem is due to a general error in the source, we fix it and do the build plus
tests on all systems again from scratch.

e The build and test process takes 2-3 days. If we receive a report regarding a fatal bug
during this process (for example, one that causes a core dump), we fix the problem and
restart the build process.

e After publishing the binaries on http://dev.mysql.com/, we send out an announce-
ment message to the mysql and announce mailing lists. See Section 1.7.1.1 [Mailing-
list], page 32. The announcement message contains a list of all changes to the release
and any known problems with the release. The Known Problems section in the release
notes has been needed for only a handful of releases.

e To quickly give our users access to the latest MySQL features, we do a new MySQL
release every 4-8 weeks. Source code snapshots are built daily and are available at
http://downloads.mysql.com/snapshots.php.

o If despite our best efforts, we get any bug reports after the release is done that there
was something critically wrong with the build on a specific platform, we will fix it at
once and build a new ’a’ release for that platform. Thanks to our large user base,
problems are found quickly.

Chapter 2: Installing MySQL 67

e Our track record for making good releases is quite good. In the last 150 releases, we
had to do a new build for fewer than 10 releases. In three of these cases, the bug was
a faulty glibc library on one of our build machines that took us a long time to track
down.

2.1.2.5 MySQL Binaries Compiled by MySQL AB

As a service of MySQL AB, we provide a set of binary distributions of MySQL that are
compiled on systems at our site or on systems where supporters of MySQL kindly have
given us access to their machines.

In addition to the binaries provided in platform-specific package formats, we offer binary
distributions for a number of platforms in the form of compressed tar files (.tar.gz files).
See Section 2.2 [Quick Standard Installation], page 77.

For Windows distributions, see Section 2.2.1 [Windows installation], page 78.

These distributions are generated using the script Build-tools/Do-compile, which com-
piles the source code and creates the binary tar.gz archive using scripts/make_binary_
distribution.

These binaries are configured and built with the following compilers and options. This in-
formation can also be obtained by looking at the variables COMP_ENV_INFO and CONFIGURE_
LINE inside the script bin/mysqlbug of every binary tar file distribution.

The following binaries are built on MySQL AB development systems:

Linux 2.4.xx x86 with gcc 2.95.3:
CFLAGS="-02 -mcpu=pentiumpro" CXX=gcc CXXFLAGS="-02 -

mcpu=pentiumpro -felide-constructors" ./configure --prefix=/usr/local/mysqll]

--with-extra-charsets=complex —-enable-thread-safe-client
--enable-local-infile —--enable-assembler --disable-shared --with-
client-ldflags=-all-static --with-mysqld-ldflags=-all-static

Linux 2.4.x x86 with icc (Intel C++ Compiler 8.0):
CC=icc CXX=icc CFLAGS="-03 -unroll2 -ip -mp -no-gcc -restrict"
CXXFLAGS="-03 -unroll2 -ip -mp -no-gcc -restrict" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
—--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
-—enable-thread-safe-client ——enable-local-infile --enable-
assembler --disable-shared --with-client-1ldflags=-all-static
--with-mysqld-ldflags=-all-static —-with-embedded-server
--with-innodb

Linux 2.4.xx Intel Itanium 2 with ecc (Intel C++ Itanium Compiler 7.0):
CC=ecc CFLAGS="-02 -tpp2 -ip —nolib_inline" CXX=ecc CXXFLAGS="-02
-tpp2 -ip -nolib_inline" ./configure —--prefix=/usr/local/mysql
--with-extra-charsets=complex —-enable-thread-safe-client
-—enable-local-infile

Linux 2.4.xx Intel Itanium with ecc (Intel C++ Itanium Compiler 7.0):
CC=ecc CFLAGS=-tppl CXX=ecc CXXFLAGS=-tppl ./configure —--
prefix=/usr/local/mysql --with-extra-charsets=complex —-enable-
thread-safe-client --enable-local-infile

68 MySQL Technical Reference for Version 5.0.0-alpha

Linux 2.4.xx alpha with ccc (Compaq C V6.2-505 / Compaq C++ V6.3-006):
CC=ccc CFLAGS="-fast —arch generic" CXX=cxx CXXFLAGS="-
fast -arch generic -noexceptions -nortti" ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex
-—enable-thread-safe-client —-—enable-local-infile —--with-
mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared
--disable-shared

Linux 2.x.xx ppc with gcc 2.95.4:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-
03 -fno-omit-frame-pointer -felide-constructors -fno-
exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --
localstatedir=/usr/local/mysql/data ——libexecdir=/usr/local/mysql/bin}]
--with-extra-charsets=complex —-enable-thread-safe-client
—--enable-local-infile --disable-shared --with-embedded-server
--with-innodb

Linux 2.4.xx s390 with gcc 2.95.3:
CFLAGS="-02" CXX=gcc CXXFLAGS="-02 -felide-constructors"
./configure --prefix=/usr/local/mysql --with-extra-charsets=complexj]
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-client-ldflags=-all-static --with-mysqld-ldflags=-all-
static

Linux 2.4.xx x86_64 (AMD64) with gcc 3.2.1:
CXX=gcc ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client —--enable-local-infile
--disable-shared

Sun Solaris 8 x86 with gcc 3.2.3:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-
03 -fno-omit-frame-pointer -felide-constructors -fno-
exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --
localstatedir=/usr/local/mysql/data —--libexecdir=/usr/local/mysql/bin}]
--with-extra-charsets=complex ——enable-thread-safe-client
—-—enable-local-infile —--disable-shared --with-innodb

Sun Solaris 8 SPARC with gcc 3.2:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions
-fno-rtti" ./configure —-prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client --enable-local-infile
--enable-assembler ——with-named-z-libs=no --with-named-curses-
libs=-lcurses --disable-shared

Sun Solaris 8 SPARC 64-bit with gcc 3.2:
CC=gcc CFLAGS="-03 -m64 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-03 -m64 -fno-omit-frame-pointer -felide-constructors
-fno-exceptions -fno-rtti" ./configure —--prefix=/usr/local/mysql
--with-extra-charsets=complex —-enable-thread-safe-client

Chapter 2:

Sun Solaris

Sun Solaris

Installing MySQL 69

—--enable-local-infile ——with—-named-z-libs=no —-with-named-curses-
libs=-1lcurses —-disable-shared

9 SPARC with gcc 2.95.3:

CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client —--enable-local-infile
--enable-assembler ——-with-named-curses-libs=-lcurses —--disable-
shared

9 SPARC with cc-5.0 (Sun Forte 5.0):

CC=cc-5.0 CXX=CC ASFLAGS="-xarch=v9" CFLAGS="-Xa —xstrconst

-mt -D_FORTEC_ -xarch=v9" CXXFLAGS="-noex -mt -D_FORTEC_

-xarch=v9" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client --enable-local-infile
--enable-assembler --with-named-z-1libs=no --enable-thread-safe-
client --disable-shared

IBM AIX 4.3.2 ppc with gcc 3.2.3:

CFLAGS="-02 -mcpu=powerpc -Wa,-many " CXX=gcc CXXFLAGS="-02
-mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions
—-fno-rtti" ./configure --prefix=/usr/local/mysql —-with-extra-
charsets=complex —-enable-thread-safe-client --enable-local-infile
--with-named-z-libs=no --disable-shared

IBM AIX 4.3.3 ppc with x1C_r (IBM Visual Age C/C++ 6.0):

CC=xlc_r CFLAGS="-ma -02 -gstrict —qoptimize=2 -gmaxmem=8192"

CXX=x1C_r CXXFLAGS ="-ma -02 -gstrict —qoptimize=2 -qmaxmem=8192"

./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/datal]
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-

libs=no --disable-shared --with-innodb

IBM AIX 5.1.0 ppc with gcc 3.3:

CFLAGS="-02 -mcpu=powerpc -Wa,-many" CXX=gcc CXXFLAGS="-02
-mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions
-fno-rtti" ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex ——enable-thread-safe-client —-enable-local-infile
--with-named-z-libs=no --disable-shared

IBM AIX 5.2.0 ppc with x1C_r (IBM Visual Age C/C++ 6.0):

CC=xlc_r CFLAGS="-ma -02 -gstrict —qoptimize=2 -gmaxmem=8192"

CXX=x1C_r CXXFLAGS="-ma -02 -gqstrict —qoptimize=2 -gmaxmem=8192"

./configure ——prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/datal]
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-

libs=no --disable-shared --with-embedded-server --with-innodb

70 MySQL Technical Reference for Version 5.0.0-alpha

HP-UX 10.20 pa-riscl.1 with gcc 3.1:
CFLAGS="-DHPUX -I/opt/dce/include -03 -fPIC" CXX=gcc CXXFLAGS="-
DHPUX -I/opt/dce /include -felide-constructors -fno-exceptions
-fno-rtti -03 -fPIC" ./configure —--prefix=/usr/local/mysql
--with-extra-charsets=complex ——enable-thread-safe-client --
enable-local-infile —-with-pthread --with-named-thread-libs=-1dce
--with-lib-ccflags=-fPIC --disable-shared

HP-UX 11.00 pa-risc with aCC (HP ANSI C++ B3910B A.03.50):
CC=cc CXX=aCC CFLAGS=+DAportable CXXFLAGS=+DAportable ./configure
—--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
-—enable-thread-safe-client ——enable-local-infile --disable-shared
--with-embedded-server --with-innodb

HP-UX 11.11 pa-risc2.0 64bit with aCC (HP ANSI C++ B3910B A.03.33):
CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure --
prefix=/usr/local/mysql --with-extra-charsets=complex —-enable-
thread-safe-client —-enable-local-infile --disable-shared

HP-UX 11.11 pa-risc2.0 32bit with aCC (HP ANSI C++ B3910B A.03.33):
CC=cc CXX=aCC CFLAGS="+DAportable" CXXFLAGS="+DAportable"
./configure —-prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/datal]
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-innodb

HP-UX 11.22 ia64 64bit with acC (HP aC++/ANSI C B3910B A.05.50):
CC=cc CXX=aCC CFLAGS="+DD64 +DSitanium2" CXXFLAGS="+DD64
+DSitanium2" ./configure —--prefix=/usr/local/mysql -~
localstatedir=/usr/local/mysql/data —--libexecdir=/usr/local/mysql/bin}]
--with-extra-charsets=complex ——enable-thread-safe-client
—-—enable-local-infile --disable-shared --with-embedded-server
--with-innodb

Apple Mac OS X 10.2 powerpc with gcc 3.1:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions
-fno-rtti" ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex —-enable-thread-safe-client —--enable-local-infile
--disable-shared

FreeBSD 4.7 1386 with gcc 2.95.4:
CFLAGS=-DHAVE_BROKEN_REALPATH ./configure —-prefix=/usr/local/mysqll]
--with-extra-charsets=complex —-enable-thread-safe-client
-—enable-local-infile —--enable-assembler —-with-named-z-libs=not-
used --disable-shared

FreeBSD 4.7 i386 using LinuxThreads with gcc 2.95.4:
CFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT
-D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads"

Chapter 2: Installing MySQL 71

CXXFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT -D_
THREAD_SAFE -I/usr/local/include/pthread/linuxthreads" ./configure
—--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --enable-thread-safe-client
-—enable-local-infile -—enable-assembler --with-named-thread-
libs="-DHAVE_GLIBC2_STYLE_GETHOSTBYNAME_R -D_THREAD_SAFE -I
/usr/local/include/pthread/linuxthreads -L/usr/local/lib -11thread
-llgcc_r" --disable-shared --with-embedded-server --with-innodb

QNX Neutrino 6.2.1 i386 with gcc 2.95.3qnx-nto 20010315:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions
-fno-rtti" ./configure —--prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--disable-shared

The following binaries are built on third-party systems kindly provided to MySQL AB by
other users. These are provided only as a courtesy; MySQL AB does not have full control
over these systems, so we can provide only limited support for the binaries built on them.

SCO Unix 3.2v5.0.6 1386 with gcc 2.95.3:
CFLAGS="-03 -mpentium" LDFLAGS=-static CXX=gcc CXXFLAGS="-03 -
mpentium -felide-constructors" ./configure --prefix=/usr/local/mysqll}
--with-extra-charsets=complex —-enable-thread-safe-client
--enable-local-infile —--with-named-z-libs=no --enable-thread-safe-
client --disable-shared

SCO OpenUnix 8.0.0 i386 with CC 3.2:
CC=cc CFLAGS="-0" CXX=CC ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex ——enable-thread-safe-client
--enable-local-infile —--with-named-z-libs=no --enable-thread-safe-
client --disable-shared

Compaq Tru64 OSF/1 V5.1 732 alpha with cc/cxx (Compaq C V6.3-0291 / DIGITAL
C++ V6.1-027):
CC="cc —-pthread" CFLAGS="-04 -ansi_alias -ansi_args -fast -
inline speed -speculate all" CXX="cxx -pthread" CXXFLAGS="-04
-ansi_alias -fast -inline speed -speculate all -noexceptions
-nortti" ./configure —--prefix=/usr/local/mysql —-with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--with-prefix=/usr/local/mysql --with-named-thread-libs="-
lpthread -1mach -lexc -1c" --disable-shared --with-mysqld-ldflags=-
all-static

SGI Irix 6.5 IP32 with gcc 3.0.1:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXXFLAGS="-03
—fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex —--enable-thread-safe-client --enable-local-infile
--disable-shared

72 MySQL Technical Reference for Version 5.0.0-alpha

FreeBSD /sparc64 5.0 with gcc 3.2.1:
CFLAGS=-DHAVE_BROKEN_REALPATH ./configure —-prefix=/usr/local/mysqll]
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin}]
--with-extra-charsets=complex ——enable-thread-safe-client
—-—enable-local-infile --disable-shared --with-innodb

The following compile options have been used for binary packages that MySQL AB provided
in the past. These binaries no longer are being updated, but the compile options are listed
here for reference purposes.

Linux 2.2.xx SPARC with egcs 1.1.2:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-03
-fno-omit-frame-pointer -felide-constructors —-fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
-—enable-assembler --disable-shared

Linux 2.2.x with x686 with gcc 2.95.2:
CFLAGS="-03 -mpentiumpro" CXX=gcc CXXFLAGS="-03 -mpentiumpro
-felide-constructors -fno-exceptions —-fno-rtti" ./configure
--prefix=/usr/local/mysql --enable-assembler —--with-mysqld-
ldflags=-all-static --disable-shared --with-extra-charsets=complex

SunOS 4.1.4 2 sundc with gcc 2.7.2.1:
CC=gcc CXX=gcc CXXFLAGS="-03 -felide-constructors" ./configure
--prefix=/usr/local/mysql --disable-shared --with-extra-
charsets=complex ——-enable—-assembler

SunOS 5.5.1 (and above) sund4u with eges 1.0.3a or 2.90.27 or
gcc 2952 and newer: CC=gcc CFLAGS="-03" CXX=gcc CXXFLAGS="-03
-felide-constructors -fno-exceptions -fno-rtti" ./configure
--prefix=/usr/local/mysql --with-low-memory --with-extra-
charsets=complex —-enable-assembler

SunOS 5.6 i86pc with gcc 2.8.1:
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure —-prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex

BSDI BSD/OS 3.1 i386 with gcc 2.7.2.1:
CC=gcc CXX=gcc CXXFLAGS=-0 ./configure —--prefix=/usr/local/mysql
--with-extra-charsets=complex

BSDI BSD/OS 2.1 i386 with gcc 2.7.2:
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

AIX 4.2 with gce 2.7.2.2:
CC=gcc CXX=gcc CXXFLAGS=-03 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

Anyone who has more optimal options for any of the preceding configurations listed can
always mail them to the MySQL internals mailing list. See Section 1.7.1.1 [Mailing-list],
page 32.

Chapter 2: Installing MySQL 73

RPM distributions prior to MySQL 3.22 are user-contributed. Beginning with MySQL 3.22,
RPM distributions are generated by MySQL AB.

If you want to compile a debug version of MySQL, you should add --with-debug or —-
with-debug=full to the preceding configure commands and remove any -fomit-frame-
pointer options.

2.1.3 How to Get MySQL

Check the MySQL home page (http://www.mysql.com/) for information about the current
version and for downloading instructions.
Our main mirror is located at http://mirrors.sunsite.dk/mysql/.

For a complete up-to-date list of MySQL download mirror sites, see http://dev.mysql.com/downloads/mi:
There you will also find information about becoming a MySQL mirror site and how to
report a bad or out-of-date mirror.

2.1.4 Verifying Package Integrity Using M D5 Checksums or GnuPG

After you have downloaded the MySQL package that suits your needs and before you
attempt to install it, you should make sure that it is intact and has not been tampered
with. MySQL AB offers three means of integrity checking:

e MD5 checksums
e Cryptographic signatures using GnuPG, the GNU Privacy Guard
e For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download
the respective package one more time, perhaps from another mirror site. If you repeatedly
cannot successfully verify the integrity of the package, please notify us about such inci-
dents, including the full package name and the download site you have been using, at
webmaster@mysql.com or build@mysql.com. Do not report downloading problems using
the bug-reporting system.

2.1.4.1 Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum
matches the one provided on the MySQL download pages. Each package has an individual
checksum that you can verify with the following command, where package_name is the
name of the package you downloaded:

shell> md5sum package_name
Example:

shell> md5sum mysql-standard-4.0.17-pc-linux-i686.tar.gz
60£5£e969d61c8£82e4f7£62657e1f06 mysql-standard-4.0.17-pc-1linux-i686.tar.gz}

You should verify that the resulting checksum (the string of hexadecimal digits) matches
the one displayed on the download page immediately below the respective package.

74 MySQL Technical Reference for Version 5.0.0-alpha

Note that not all operating systems support the md5sum command. On some, it is simply
called md5 and others do not ship it at all. On Linux, it is part of the GNU Text Utilities
package, which is available for a wide range of platforms. You can download the source code
from http://www.gnu.org/software/textutils/ as well. If you have OpenSSL installed,
you can also use the command openssl md5 package_name instead. A DOS/Windows
implementation of the md5 command is available from http://www.fourmilab.ch/md5/.

2.1.4.2 Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use crypto-
graphic signatures. This is more reliable than using MD5 checksums, but requires more
work.

Beginning with MySQL 4.0.10 (February 2003), MySQL AB started signing downloadable
packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source alternative
to the very well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See
http://wuw.gnupg.org/ for more information about GnuPG and how to obtain and install
it on your system. Most Linux distributions already ship with GnuPG installed by default.
For more information about OpenPGP, see http://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of MySQL
AB’s public GPG build key. You can download the key from http://www.keyserver.net/.
The key that you want to obtain is named build@mysql.com. Alternatively, you can cut
and paste the key directly from the following text:

Key ID:
pub 1024D/5072E1F5 2003-02-03

MySQL Package signing key (www.mysql.com) <build@mysqgl.com>
Fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1Fb5

Public Key (ASCII-armored):

Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bP1UWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+0mSLNO9brZ
fw2v0UgCmYv2hWOhyDHuvY1QA/BThQoADgj8AW6/0Lo7V1W9/8VuHPOgQwCgvzV3
BqO0xRznNCRCRxAuAuVztHRCEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwROpRWVArNYJdDRT+rf2RUe3vpqukNQU/hnEIUHJRQqYHo8gTxvxXNQc7f JYLV
K2HtkrPbP72vwsEKMYhhrOeKCbtLGf1s9kr jJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2Zo0OHODANwpUkP4317 jsDmgtobZX9qnrAXw+uNDI
QJEXME6FSbiOLLtZciN1YsafwAPEOMDKpMgAK6IyisNtPvaLd81HObPAnWqcyefep
rv0OsxxqUEMcM307wwgfN83P0kDasDbs3p jwPhxvhz6//62zQJ7Q7TX1TUUwgUGF j
a2FnZSBzaWduaWbnIGtleSAod3d3Lm15¢c3FsLmNvbSkgPGJ1aWxkQG15¢c3FsLmNv
bT6IXQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAWIDFgIBAheAAAOJEIxxjTtQ
cuH1cY4AnilUwTXn8MatQ0iG0a/bPxrvK/gCAJ40inSNZRYTnblChwFaazt7PF3q
zIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEE1Q4SqycpHyJOEAn1mxHi j£t00bKXvu

Chapter 2: Installing MySQL 75

cSo/pECUmppiAJ41MIMRV j5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJ
YiKJAA0JELb1zU3GuiQ/1pEAoThpp6BozKI8p6eaabzF5M1 JH58pAKCu/RO0fK8J
Eg2alos+5zEYrB/LsrkCDQQ+PqMdEAgA7+GIfxbMdY4ws1Pn jHOrFAN2qfWsEN/1
xaZoJYc3a6M02WCnH16ahT2/tBK2w1QI4YFteR47gCvtgb601 JHE f002Hf LmRDR1
Rjd1DTCHqeyX7CHhcghj/dNR1W2Z0O15QFEcmVOUOVhp3aFfWC4Ujfs3LU+hkAWzE
7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELgqX1DY7LwoPEb/09Rkbf4fm
Lel1EzTaCa4PgARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8I1bf5vSYHbuESp
/10IDznkg/p8kW+3FxulrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQL +Lwqq
a8CGrRfs0AJxim63CHEty5mUc5rUSnTs1GYEIOCR1BeQauyPZbPDsDDOMZ1ZaSaf
anFvwFG6L1x9xkU7tzq+vKLoWkm4ub5xf3vnb5VjnSdlal9eQnUcXil4cnBGoTbOW
I39Ecyzgs1zBdC++MPjcQTcA7p6JUVsP60AB3F(Wgb4tulUoOEc8bsM8b3Ev42Lmu
QT5NdKHGwHsXTPt10k1k4bQk40ajHsiy1BMahpT27 jWjJ1MiJc+IWJIOmghkKHt92
6s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkgOn6KdUOetdZ
Whe70YGNPwlyjWJT1ThMBBgRAgAMBQI+PqMdBQkJZgGAAA0JEIxxjTtQcuH17p4A
n3r1QpVCI9yhnW2cSAjq+kr72GX0eAJ4295k16NxYEuFApmr1+0uUq/S1sQ==
=YJkx

You can import the build key into your personal public GPG keyring by using gpg --
import. For example, if you save the key in a file named ‘mysql_pubkey.asc’, the import
command looks like this:

shell> gpg -—import mysql_pubkey.asc
See the GPG documentation for more information on how to work with public keys.

After you have downloaded and imported the public build key, download your desired
MySQL package and the corresponding signature, which also is available from the download
page. The signature file has the same name as the distribution file with an ‘. asc’ extension.
For example:

Distribution file mysql-standard-4.0.17-pc-1linux-i686.tar.gz
Signature file mysql-standard-4.0.17-pc-linux-
i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following
command to verify the signature for the distribution file:

shell> gpg --verify package_name.asc
Example:

shell> gpg --verify mysql-standard-4.0.17-pc-linux-i686.tar.gz.asc
gpg: Warning: using insecure memory!
gpg: Signature made Mon 03 Feb 2003 08:50:39 PM MET
using DSA key ID 5072E1F5
gpg: Good signature from
"MySQL Package signing key (www.mysql.com) <build@mysql.com>"

The Good signature message indicates that everything is all right. You can ignore the
insecure memory warning.

76 MySQL Technical Reference for Version 5.0.0-alpha

2.1.4.3 Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG
signature and MD5 checksum. You can verify a package by running the following command:

shell> rpm --checksig package_name.rpm
Example:

shell> rpm --checksig MyS(QL-server-4.0.10-0.1386.rpm
MySQL-server-4.0.10-0.i386.rpm: md5 gpg 0K

Note: If you are using RPM 4.1 and it complains about (GPG) NOT 0K (MISSING KEYS:
GPG#5072e1£5), even though you have imported the MySQL public build key into your
own GPG keyring, you need to import the key into the RPM keyring first. RPM 4.1
no longer uses your personal GPG keyring (or GPG itself). Rather, it maintains its own
keyring because it is a system-wide application and a user’s GPG public keyring is a user-
specific file. To import the MySQL public key into the RPM keyring, first obtain the key as
described in the previous section. Then use rpm —-import to import the key. For example,
if you have the public key stored in a file named ‘mysql_pubkey.asc’, import it using this
command:

shell> rpm --import mysql_pubkey.asc
2.1.5 Imnstallation Layouts

This section describes the default layout of the directories created by installing binary
or source distributions provided by MySQL AB. If you install a distribution provided by
another vendor, some other layout might be used.

On Windows, the default installation directory is ‘C:\mysql’, which has the following sub-
directories:

Directory Contents of Directory

‘bin’ Client programs and the mysqld server
‘data’ Log files, databases

‘Docs’ Documentation

‘examples’ Example programs and scripts
‘include’ Include (header) files

‘1ib’ Libraries

‘scripts’ Utility scripts

‘share’ Error message files

Installations created from Linux RPM distributions result in files under the following system
directories:

Directory Contents of Directory
‘/usr/bin’ Client programs and scripts
‘/usr/sbin’ The mysqld server
‘/var/lib/mysql’ Log files, databases
‘/usr/share/doc/packages’ Documentation
‘/usr/include/mysql’ Include (header) files

‘/usr/1ib/mysql’ Libraries

Chapter 2: Installing MySQL 7

‘/usr/share/mysql’ Error message and character set files
‘/usr/share/sql-bench’ Benchmarks

On Unix, a tar file binary distribution is installed by unpacking it at the installation
location you choose (typically ‘/usr/local/mysql’) and creates the following directories in
that location:

Directory Contents of Directory

‘bin’ Client programs and the mysqld server
‘data’ Log files, databases

‘docs’ Documentation, ChangeLog
‘include’ Include (header) files

‘1ib’ Libraries

‘scripts’ mysql_install_db

‘share/mysql’ Error message files

‘sql-bench’ Benchmarks

A source distribution is installed after you configure and compile it. By default, the instal-
lation step installs files under ‘/usr/local’, in the following subdirectories:

Directory Contents of Directory

‘bin’ Client programs and scripts
‘include/mysql’ Include (header) files

‘info’ Documentation in Info format
‘lib/mysql’ Libraries

‘libexec’ The mysqld server
‘share/mysql’ Error message files
‘sql-bench’ Benchmarks and crash-me test
‘var’ Databases and log files

Within an installation directory, the layout of a source installation differs from that of a
binary installation in the following ways:

e The mysqld server is installed in the ‘libexec’ directory rather than in the ‘bin’
directory.

e The data directory is ‘var’ rather than ‘data’.

e mysql_install_db is installed in the ‘bin’ directory rather than in the ‘scripts’
directory.

e The header file and library directories are ‘include/mysql’ and ‘1ib/mysql’ rather
than ‘include’ and ‘1ib’.

You can create your own binary installation from a compiled source distribution by execut-
ing the ‘scripts/make_binary_distribution’ script from the top directory of the source
distribution.

2.2 Standard MySQL Installation Using a Binary
Distribution

This section covers the installation of MySQL on platforms where we offer packages using
the native packaging format of the respective platform. (This is also known as performing
a “binary install.”) However, binary distributions of MySQL are available for many other

78

MySQL Technical Reference for Version 5.0.0-alpha

platforms as well. See Section 2.2.5 [Installing binary], page 97 for generic installation
instructions for these packages that apply to all platforms.

See Section 2.1 [General Installation Issues|, page 59 for more information on what other
binary distributions are available and how to obtain them.

2.2.1 Installing MySQL on Windows

The installation process for MySQL on Windows has the following steps:

1.

Obtain and install the distribution.

2. Set up an option file if necessary.

3. Select the server you want to use.

4.

5. Assign passwords to the initial MySQL accounts.

Start the server.

MySQL for Windows is available in two distribution formats:

e The binary distribution contains a setup program that installs everything you need so

that you can start the server immediately.

e The source distribution contains all the code and support files for building the executa-

bles using the VC++ 6.0 compiler.

Generally speaking, you should use the binary distribution. It’s simpler, and you need no
additional tools to get MySQL up and running.

This section describes how to install MySQL on Windows using a binary distribution. To
install using a source distribution, see Section 2.3.6 [Windows source build], page 113.

2.2.1.1 Windows System Requirements

To run MySQL on Windows, you need the following;:
e A 32-bit Windows operating system such as 9x, Me, NT, 2000, or XP. The NT family

(Windows NT, 2000, and XP) permits you to run the MySQL server as a service. See
Section 2.2.1.7 [NT start|, page 83.

TCP/IP protocol support.

A copy of the MySQL binary distribution for Windows, which can be downloaded from
http://dev.mysql.com/downloads/. See Section 2.1.3 [Getting MySQL], page 73.

Note: If you download the distribution via FTP, we recommend the use of an adequate
FTP client with a resume feature to avoid corruption of files during the download
process.

WinZip or other Windows tool that can read ‘.zip’ files, to unpack the distribution
file.

Enough space on the hard drive to unpack, install, and create the databases in accor-
dance with your requirements.

If you plan to connect to the MySQL server via ODBC, you also need the MyODBC
driver. See Section 21.3 [ODBC], page 1015.

Chapter 2: Installing MySQL 79

e If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer
filesystem. Don’t forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables.
See Section 14.2.5 [CREATE TABLE], page 697.

2.2.1.2 Installing a Windows Binary Distribution

To install MySQL on Windows using a binary distribution, follow this procedure:

1. If you are working on a Windows N'T, 2000, or XP machine, make sure that you have
logged in as a user with administrator privileges.

2. If you are doing an upgrade of an earlier MySQL installation, it is necessary to stop
the current server. On Windows NT, 2000, or XP machines, if you are running the
server as a Windows service, stop it as follows from the command prompt:

C:\> NET STOP MySQL

If you plan to use a different server after the upgrade (for example, if you want to run
mysqld-max rather than mysqld), remove the existing service:

C:\> C:\mysql\bin\mysqld --remove
You can reinstall the service to use the proper server after upgrading.
If you are not running the MySQL server as a service, stop it like this:
C:\> C:\mysql\bin\mysqladmin -u root shutdown
3. Exit the WinMySQLAdmin program if it is running.
4. Unzip the distribution file to a temporary directory.

5. Run the setup.exe program to begin the installation process. If you want to install
MySQL into a location other than the default directory (‘C:\mysql’), use the Browse
button to specify your preferred directory. If you do not install MySQL into the default
location, you will need to specify the location whenever you start the server. The easiest
way to do this is to use an option file, as described in Section 2.2.1.3 [Windows prepare
environment], page 80.

6. Finish the install process.

Important note: Early alpha Windows distributions for MySQL 4.1 do not contain an
installer program. A 4.1 distribution is a Zip file that you just unzip in the location
where you want to install MySQL. For example, to install ‘mysql-4.1.1-alpha-win.zip’
as ‘C:\mysql’, unzip the distribution file on the C: drive, then rename the resulting
‘mysql-4.1.1-alpha’ directory to ‘mysql’.

If you are upgrading to MySQL 4.1 from an earlier version, you will want to preserve your
existing ‘data’ directory that contains the grant tables in the mysql database and your
own databases. Before installing 4.1, stop the server if it is running, and save your ‘data’
directory to another location. Then either rename the existing ‘C:\mysql’ directory or
remove it. Install 4.1 as described in the preceding paragraph, and then replace its ‘data’
directory with your old ‘data’ directory. This will avoid the loss of your current databases.
Start the new server and update the grant tables. See Section 2.5.8 [Upgrading-grant-tables],
page 146.

Please see Section 2.2.1.8 [Windows troubleshooting], page 86 if you encounter difficulties
during installation.

80 MySQL Technical Reference for Version 5.0.0-alpha

2.2.1.3 Preparing the Windows MySQL Environment

If you need to specify startup options when you run the server, you can indicate them on the
command line or place them in an option file. For options that will be used every time the
server starts, you will find it most convenient to use an option file to specify your MySQL
configuration. This is true particularly under the following circumstances:

e The installation or data directory locations are different from the default locations
(‘C:\mysql’ and ‘C:\mysql\data’).

e You need to tune the server settings. For example, to use the InnoDB transactional
tables in MySQL 3.23, you must manually add some extra lines to the option file, as
described in Section 16.4 [InnoDB configuration|, page 788. (As of MySQL 4.0, InnoDB
creates its data files and log files in the data directory by default. This means you need
not configure InnoDB explicitly. You may still do so if you wish, and an option file will
be useful in this case, too.)

On Windows, the MySQL installer places the data directory directly under the directory
where you install MySQL. If you would like to use a data directory in a different loca-
tion, you should copy the entire contents of the ‘data’ directory to the new location. For
example, by default, the installer places MySQL in ‘C:\mysql’ and the data directory in
‘C:\mysqll\data’. If you want to use a data directory of ‘E:\mydata’, you must do two
things:

e Move the data directory from ‘C:\mysqgl\data’ to ‘E:\mydata’.

e Use a —-—datadir option to specify the new data directory location each time you start
the server.

When the MySQL server starts on Windows, it looks for options in two files: the ‘my.ini’
file in the Windows directory, and the ‘C:\my.cnf’ file. The Windows directory typically
is named something like ‘C:\WINDOWS’ or ‘C:\WinNT’. You can determine its exact location
from the value of the WINDIR environment variable using the following command:

C:\> echo %WINDIRY

MySQL looks for options first in the ‘my.ini’ file, then in the ‘my.cnf’ file. However, to
avoid confusion, it’s best if you use only one file. If your PC uses a boot loader where the
C: drive isn’t the boot drive, your only option is to use the ‘my.ini’ file. Whichever option
file you use, it must be a plain text file.

An option file can be created and modified with any text editor, such as the Notepad
program. For example, if MySQL is installed at ‘E:\mysql’ and the data directory is
located at ‘E:\mydatal\data’, you can create the option file and set up a [mysqld] section
to specify values for the basedir and datadir parameters:

[mysqld]

set basedir to your installation path

basedir=E:/mysql

set datadir to the location of your data directory

datadir=E:/mydata/data

Note that Windows pathnames are specified in option files using forward slashes rather than
backslashes. If you do use backslashes, you must double them.

Chapter 2: Installing MySQL 81

Another way to manage an option file is to use the WinMySQLAdmin tool. You can find
WinMySQLAdmin in the ‘bin’ directory of your MySQL installation, as well as a help file
containing instructions for using it. WinMySQLAdmin has the capability of editing your
option file, but note these points:
e WinMySQLAdmin uses only the ‘my.ini’ file.
e [f WinMySQLAdmin finds a ‘C:\my.cnf’ file, it will in fact rename it to ‘C:\my_cnf .bak’
to disable it.

Now you are ready to start the server.

2.2.1.4 Selecting a Windows Server

Starting with MySQL 3.23.38, the Windows distribution includes both the normal and the
MySQL-Max server binaries. Here is a list of the different MySQL servers from which you
can choose:

Binary Description

mysqld Compiled with full debugging and automatic memory allocation check-
ing, symbolic links, and InnoDB and BDB tables.

mysqld-opt Optimized binary. From version 4.0 on, InnoDB is enabled. Before 4.0,
this server includes no transactional table support.

mysqld-nt Optimized binary for Windows NT, 2000, and XP with support for
named pipes.

mysqld-max Optimized binary with support for symbolic links, and InnoDB and BDB
tables.

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.

All of the preceding binaries are optimized for modern Intel processors, but should work on
any Intel i386-class or higher processor.

MySQL supports TCP/IP on all Windows platforms. The mysqld-nt and mysql-max-nt
servers support named pipes on NT, 2000, and XP. However, the default is to use TCP/IP
regardless of the platform. (Named pipes are slower than TCP/IP in many Windows
configurations.) Named pipe use is subject to these conditions:

e Starting from MySQL 3.23.50, named pipes are enabled only if you start the server
with the ——enable-named-pipe option. It is now necessary to use this option explicitly
because some users have experienced problems shutting down the MySQL server when
named pipes were used.

e Named pipe connections are allowed only by the mysqld-nt or mysqld-max-nt servers,
and only if the server is run on a version of Windows that supports named pipes (NT,
2000, XP).

e These servers can be run on Windows 98 or Me, but only if TCP/IP is installed; named
pipe connections cannot be used.

e On Windows 95, these servers cannot be used.

Note: Most of the examples in the following sections use mysqld as the server name. If you
choose to use a different server, such as mysqld-opt, make the appropriate substitutions
in the commands that are shown in the examples. One good reason to choose a different
server is that because mysqld contains full debugging support, it uses more memory and
runs slower than the other Windows servers.

82 MySQL Technical Reference for Version 5.0.0-alpha

2.2.1.5 Starting the Server for the First Time

On Windows 95, 98, or Me, MySQL clients always connect to the server using TCP/IP.
(This will allow any machine on your network to connect to your MySQL server.) Because of

this, you must make sure that TCP/IP support is installed on your machine before starting
MySQL. You can find TCP/IP on your Windows CD-ROM.

Note that if you are using an old Windows 95 release (for example, OSR2), it’s likely that
you have an old Winsock package; MySQL requires Winsock 2! You can get the newest
Winsock from http://www.microsoft.com/. Windows 98 has the new Winsock 2 library,
so it is unnecessary to update the library.

On NT-based systems such as Windows N'T', 2000, or XP, clients have two options. They can
use TCP/IP, or they can use a named pipe if the server supports named pipe connections.

For information about which server binary to run, see Section 2.2.1.4 [Windows select
server|, page 81.

This section gives a general overview of starting the MySQL server. The following sections
provide more specific information for particular versions of Windows.

The examples in these sections assume that MySQL is installed under the default location
of ‘C:\mysql’. Adjust the pathnames shown in the examples if you have MySQL installed
in a different location.

Testing is best done from a command prompt in a console window (a “DOS window”). This
way you can have the server display status messages in the window where they are easy to
see. If something is wrong with your configuration, these messages will make it easier for
you to identify and fix any problems.

To start the server, enter this command:
C:\> C:\mysql\bin\mysqld --console

For servers that include InnoDB support, you should see the following messages as the server
starts:
InnoDB: The first specified datafile c:\ibdatalibdatal did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdatal size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfileO did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfilel did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfilel size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which
indicates that the server is ready to service client connections:

Chapter 2: Installing MySQL 83

mysqld: ready for connections
Version: ’4.0.14-log’ socket: ’’ port: 3306

The server will continue to write to the console any further diagnostic output it produces.
You can open a new console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in
the data directory (‘C:\mysql\data’ by default). The error log is the file with the ‘.err’
extension.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the instructions in
Section 2.4 [Post-installation], page 117.

2.2.1.6 Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on
any version of Windows.

To start the mysqld server from the command line, you should start a console window (a
“DOS window”) and enter this command:
C:\> C:\mysql\bin\mysqld

On non-NT versions of Windows, this will start mysqld in the background. That is, after
the server starts, you should see another command prompt. If you start the server this
way on Windows N'T, 2000, or XP, the server will run in the foreground and no command
prompt will appear until the server exits. Because of this, you should open another console
window to run client programs while the server is running.

You can stop the MySQL server by executing this command:
C:\> C:\mysql\bin\mysqladmin -u root shutdown

This invokes the MySQL administrative utility mysqladmin to connect to the server and
tell it to shut down. The command connects as root, which is the default administrative
account in the MySQL grant system. Note that users in the MySQL grant system are
wholly independent from any login users under Windows.

If mysqld doesn’t start, check the error log to see whether the server wrote any messages
there to indicate the cause of the problem. The error log is located in the ‘C:\mysql\data’
directory. It is the file with a suffix of ‘. err’. You can also try to start the server as mysqld
--console; in this case, you may get some useful information on the screen that may help
solve the problem.

The last option is to start mysqld with --standalone --debug. In this case, mysqld will
write a log file ‘C:\mysqld.trace’ that should contain the reason why mysqld doesn’t start.
See Section D.1.2 [Making trace files], page 1279.

Use mysqld --help to display all the options that mysqld understands!

2.2.1.7 Starting MySQL as a Windows Service

On the NT family (Windows NT, 2000, or XP), the recommended way to run MySQL
is to install it as a Windows service. Then Windows starts and stops the MySQL server
automatically when Windows starts and stops. A server installed as a service can also be

84 MySQL Technical Reference for Version 5.0.0-alpha

controlled from the command line using NET commands, or with the graphical Services
utility.

The Services utility (the Windows Service Control Manager) can be found in the Win-
dows Control Panel (under Administrative Tools on Windows 2000 or XP). It is advis-
able to close the Services utility while performing server installation or removal operations
from this command line. This prevents some odd errors.

To get MySQL to work with TCP/IP on Windows NT 4, you must install service pack 3
(or newer).

Before installing MySQL as a Windows service, you should first stop the current server if
it is running by using the following command:

C:\> C:\mysql\bin\mysqladmin -u root shutdown

This invokes the MySQL administrative utility mysqladmin to connect to the server and
tell it to shut down. The command connects as root, which is the default administrative
account in the MySQL grant system. Note that users in the MySQL grant system are
wholly independent from any login users under Windows.

Now install the server as a service:

C:\> mysqld --install
If you have problems installing mysqld as a service using just the server name, try installing
it using its full pathname:

C:\> C:\mysql\bin\mysqld --install
As of MySQL 4.0.2, you can specify a specific service name after the -—install option. As
of MySQL 4.0.3, you can in addition specify a -—defaults-file option after the service
name to indicate where the server should obtain options when it starts. The rules that
determine the service name and option files the server uses are as follows:

e If you specify no service name, the server uses the default service name of MySQL and
the server reads options from the [mysqld] group in the standard option files.

e If you specify a service name after the --install option, the server ignores the
[mysqld] option group and instead reads options from the group that has the same
name as the service. The server reads options from the standard option files.

e If you specify a ——defaults-file option after the service name, the server ignores the

standard option files and reads options only from the [mysqld] group of the named
file.

Note: Prior to MySQL 4.0.17, a server installed as a Windows service has problems starting
if its pathname or the service name contains spaces. For this reason, avoid installing MySQL
in a directory such as ‘C:\Program Files’ or using a service name containing spaces.

In the usual case that you install the server with ——install but no service name, the server
is installed with a service name of MySQL.

As a more complex example, consider the following command:
C:\> C:\mysql\bin\mysqld --install mysql --defaults-file=C:\my-opts.cnf
Here, a service name is given after the --install option. If no --defaults-file option

had been given, this command would have the effect of causing the server to read the
[mysql] group from the standard option files. (This would be a bad idea, because that

Chapter 2: Installing MySQL 85

option group is for use by the mysql client program.) However, because the -—-defaults-
file option is present, the server reads options only from the named file, and only from
the [mysqld] option group.

You can also specify options as “Start parameters” in the Windows Services utility
before you start the MySQL service.

Once a MySQL server is installed as a service, Windows will start the service automatically
whenever Windows starts. The service also can be started immediately from the Services
utility, or by using the command NET START MySQL. The NET command is not case sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be
seen there. If mysqld doesn’t start, check the error log to see whether the server wrote
any messages there to indicate the cause of the problem. The error log is located in the

)

‘C:\mysql\data’ directory. It is the file with a suffix of ‘.err’.

When mysqld is running as a service, it can be stopped by using the Services utility,
the command NET STOP MySQL, or the command mysqladmin shutdown. If the service is
running when Windows shuts down, Windows will stop the server automatically.

From MySQL 3.23.44 on, you have the choice of installing the server as a Manual service if
you don’t wish the service to be started automatically during the boot process. To do this,
use the ——install-manual option rather than the --install option:

C:\> C:\mysql\bin\mysqld --install-manual

To remove a server that is installed as a service, first stop it if it is running. Then use the
--remove option to remove it:

C:\> C:\mysql\bin\mysqld --remove

For MySQL versions older than 3.23.49, one problem with automatic MySQL service shut-
down is that Windows waited only for a few seconds for the shutdown to complete, then
killed the database server process if the time limit was exceeded. This had the potential
to cause problems. (For example, the InnoDB storage engine had to perform crash recovery
at the next startup.) Starting from MySQL 3.23.49, Windows waits longer for the MySQL
server shutdown to complete. If you notice this still is not enough for your installation, it
is safest not to run the MySQL server as a service. Instead, start it from the command-line
prompt, and stop it with mysqladmin shutdown.

This change to tell Windows to wait longer when stopping the MySQL server
works for Windows 2000 and XP. It does not work for Windows NT, where
Windows waits only 20 seconds for a service to shut down, and after that kills
the service process. You can increase this default by opening the Registry Editor
‘\winnt\system32\regedt32.exe’ and editing the value of WaitToKillServiceTimeout
at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control in the Registry tree.
Specify the new larger value in milliseconds. For example, the value 120000 tells Windows
NT to wait up to 120 seconds.

If you don’t want to start mysqld as a service, you can start it from the command line. For
instructions, see Section 2.2.1.6 [Win95 start], page 83.

Please see Section 2.2.1.8 [Windows troubleshooting], page 86 if you encounter difficulties
during installation.

86 MySQL Technical Reference for Version 5.0.0-alpha

2.2.1.8 Troubleshooting a MySQL Installation Under Windows

When installing and running MySQL for the first time, you may encounter certain errors
that prevent the MySQL server from starting. The purpose of this section is to help you
diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server
uses the error log to record information relevant to the error that is preventing the server
from starting. The error log is located in the data directory specified in your ‘my.ini’
file. The default data directory location is ‘C:\mysql\data’. See Section 5.9.1 [Error log],
page 361.

Another source of information regarding possible errors is the console messages displayed
when the MySQL service is starting. Use the NET START mysql command from the command
line after installing mysqld as a service to see any error messages regarding the starting of
the MySQL server as a service. See Section 2.2.1.7 [NT start], page 83.

The following are examples of some of the more common error messages you may encounter
when installing MySQL and starting the server for the first time:

System error 1067 has occurred.

Fatal error: Can’t open privilege tables: Table ’mysql.host’ doesn’t exist]

These messages occur when the MySQL server cannot find the mysql privileges database
or other critical files. This error is often encountered when the MySQL base or data
directories are installed in different locations than the default locations (‘C:\mysql’ and
‘C:\mysql\data’, respectively).
If you have installed MySQL to a directory other than ‘C:\mysql’ you will need to en-
sure that the MySQL server is aware of this through the use of a configuration (my.ini)
file. The my.ini file needs to be located in your Windows directory, typically located at
‘C:\WinNT’ or ‘C:\WINDOWS’. You can determine its exact location from the value of the
WINDIR environment variable by issuing the following command from the command prompt:

C:\> echo J%WINDIRY
An option file can be created and modified with any text editor, such as the Notepad
program. For example, if MySQL is installed at ‘E:\mysql’ and the data directory is
located at ‘D:\MySQLdata’, you can create the option file and set up a [mysqld] section to
specify values for the basedir and datadir parameters:

[mysqld]

set basedir to your installation path

basedir=E:/mysql

set datadir to the location of your data directory

datadir=D:/MySQLdata
Note that Windows pathnames are specified in option files using forward slashes rather than
backslashes. If you do use backslashes, you must double them:

[mysqld]

set basedir to your installation path

basedir=C:\\Program Files\\mysql

set datadir to the location of your data directory

datadir=D:\\MySQLdata
See Section 2.2.1.3 [Windows prepare environment|, page 80.

Chapter 2: Installing MySQL 87

2.2.1.9 Running MySQL Client Programs on Windows

You can test whether the MySQL server is working by executing any of the following
commands:

C:\> C:\mysql\bin\mysqlshow

C:\> C:\mysql\bin\mysqlshow -u root mysql

C:\> C:\mysql\bin\mysqladmin version status proc

C:\> C:\mysql\bin\mysql test
If mysqld is slow to respond to TCP/IP connections from client programs on Windows
9x/Me, there is probably a problem with your DNS. In this case, start mysqld with the
--skip-name-resolve option and use only localhost and IP numbers in the Host column
of the MySQL grant tables.
You can force a MySQL client to use a named pipe connection rather than TCP/IP by
specifying the --pipe option or by specifying . (period) as the host name. Use the --
socket option to specify the name of the pipe. As of MySQL 4.1, you should use the
——protocol=PIPE option.

There are two versions of the MySQL command-line tool:

Binary Description
mysql Compiled on native Windows, offering limited text editing capabilities.
mysqlc Compiled with the Cygnus GNU compiler and libraries, which offers

readline editing.
If you want to use mysqlc, you must have a copy of the ‘cygwinb19.d11’ library installed
somewhere that mysqlc can find it. Current distributions of MySQL include this library in
the same directory as mysqlc (the ‘bin’ directory under the base directory of your MySQL
installation). If your distribution does not have the cygwinb19.d11 library in the ‘bin’
directory, look for it in the 1lib directory and copy it to your Windows system directory
(‘\Windows\system’ or a similar place).

2.2.1.10 MySQL on Windows Compared to MySQL on Unix

MySQL for Windows has by now proven itself to be very stable. The Windows version
of MySQL has the same features as the corresponding Unix version, with the following
exceptions:

Windows 95 and threads
Windows 95 leaks about 200 bytes of main memory for each thread creation.
Each connection in MySQL creates a new thread, so you shouldn’t run mysqld
for an extended time on Windows 95 if your server handles many connections!
Other versions of Windows don’t suffer from this bug.

Limited number of ports
Windows systems have about 4,000 ports available for client connections, and
after a connection on a port closes, it takes two to four minutes before the port
can be reused. In situations where clients connect to and disconnect from the
server at a high rate, it is possible for all available ports to be used up before
closed ports become available again. If this happens, the MySQL server will

88 MySQL Technical Reference for Version 5.0.0-alpha

appear to have become unresponsive even though it is running. Note that ports
may be used by other applications running on the machine as well, in which
case the number of ports available to MySQL is lower.

For more information, see http://support.microsoft.com/default.aspx?scid=kb;en-us;1

Concurrent reads
MySQL depends on the pread() and pwrite() calls to be able to mix INSERT
and SELECT. Currently we use mutexes to emulate pread() /pwrite(). We
will, in the long run, replace the file level interface with a virtual interface so
that we can use the readfile() /writefile() interface on NT, 2000, and XP
to get more speed. The current implementation limits the number of open files
MySQL can use to 2,048 (1,024 before MySQL 4.0.19), which means that you
will not be able to run as many concurrent threads on NT, 2000, and XP as on
Unix.

Blocking read
MySQL uses a blocking read for each connection, which has the following im-
plications if named pipe connections are enabled:
e A connection will not be disconnected automatically after eight hours, as
happens with the Unix version of MySQL.

e If a connection hangs, it’s impossible to break it without killing MySQL.
e mysqladmin kill will not work on a sleeping connection.
e mysqladmin shutdown can’t abort as long as there are sleeping connections.

We plan to fix this problem when our Windows developers have figured out a
nice workaround.

ALTER TABLE
While you are executing an ALTER TABLE statement, the table is locked from
being used by other threads. This has to do with the fact that on Windows,
you can’t delete a file that is in use by another thread. In the future, we may
find some way to work around this problem.

DROP TABLE
DROP TABLE on a table that is in use by a MERGE table will not work on Windows
because the MERGE handler does the table mapping hidden from the upper layer
of MySQL. Because Windows doesn’t allow you to drop files that are open, you
first must flush all MERGE tables (with FLUSH TABLES) or drop the MERGE table
before dropping the table. We will fix this at the same time we introduce views.

DATA DIRECTORY and INDEX DIRECTORY
The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ig-
nored on Windows, because Windows doesn’t support symbolic links. These
options also are ignored on systems that have a non-functional realpath() call.

DROP DATABASE
You cannot drop a database that is in use by some thread.

Killing MySQL from the Task Manager
You cannot kill MySQL from the Task Manager or with the shutdown utility
in Windows 95. You must take it down with mysqladmin shutdown.

Chapter 2: Installing MySQL 89

Case-insensitive names
Filenames are not case sensitive on Windows, so MySQL database and table
names are also not case sensitive on Windows. The only restriction is that
database and table names must be specified using the same case throughout a
given statement. See Section 10.2.2 [Name case sensitivity], page 517.

The ¢\’ pathname separator character
Pathname components in Windows 95 are separated by the ‘\’ character, which
is also the escape character in MySQL. If you are using LOAD DATA INFILE or
SELECT ... INTO OUTFILE, use Unix-style filenames with ‘/’ characters:

mysql> LOAD DATA INFILE °C:/tmp/skr.txt’ INTO TABLE skr;
mysql> SELECT * INTO OUTFILE °C:/tmp/skr.txt’ FROM skr;

Alternatively, you must double the ‘\’ character:

mysql> LOAD DATA INFILE ’C:\\tmp\\skr.txt’ INTO TABLE skr;
mysql> SELECT * INTO OUTFILE ’C:\\tmp\\skr.txt’ FROM skr;

Problems with pipes.
Pipes do not work reliably from the Windows command-line prompt. If the pipe
includes the character “Z / CHAR(24), Windows will think it has encountered
end-of-file and abort the program.

This is mainly a problem when you try to apply a binary log as follows:
C:\> mysqlbinlog binary-log-name | mysql --user=root
If you have a problem applying the log and suspect that it is because of a ~Z /
CHAR(24) character, you can use the following workaround:
C:\> mysqglbinlog binary-log-file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"
The latter command also can be used to reliably read in any SQL file that may
contain binary data.

Can’t open named pipe error
If you use a MySQL 3.22 server on Windows N'T with the newest MySQL client
programs, you will get the following error:

error 2017: can’t open named pipe to host: . pipe...

This happens because the release version of MySQL uses named pipes on NT
by default. You can avoid this error by using the -——host=localhost option to
the new MySQL clients or by creating an option file ‘C:\my.cnf’ that contains
the following information:

[client]
host = localhost

Starting from 3.23.50, named pipes are enabled only if mysqld-nt or mysqld-
max-nt is started with —-enable-named-pipe.

Access denied for user error
If you attempt to run a MySQL client program to connect to a server run-
ning on the same machine, but get the error Access denied for user ’some-
user’@’unknown’ to database ’mysql’, this means that MySQL cannot re-
solve your hostname properly.

90 MySQL Technical Reference for Version 5.0.0-alpha

To fix this, you should create a file named ‘\windows\hosts’ containing the
following information:

127.0.0.1 localhost

Here are some open issues for anyone who might want to help us improve MySQL on
Windows:

e Add some nice start and shutdown icons to the MySQL installation.

e It would be really nice to be able to kill mysqld from the Task Manager in Windows
95. For the moment, you must use mysqladmin shutdown.

e Port readline to Windows for use in the mysql command-line tool.

e GUI versions of the standard MySQL clients (mysql, mysqlshow, mysqladmin, and
mysqldump) would be nice.

e It would be nice if the socket read and write functions in ‘net.c’ were interruptible.
This would make it possible to kill open threads with mysqladmin kill on Windows.

e Add macros to use the faster thread-safe increment/decrement methods provided by
Windows.

2.2.2 Installing MySQL on Linux

The recommended way to install MySQL on Linux is by using the RPM packages. The
MySQL RPMs are currently built on a SuSE Linux 7.3 system, but should work on most
versions of Linux that support rpm and use glibc. To obtain RPM packages, see Sec-
tion 2.1.3 [Getting MySQL], page 73.

Note: RPM distributions of MySQL often are provided by other vendors. Be aware that
they may differ in features and capabilities from those built by MySQL AB, and that
the instructions in this manual do not necessarily apply to installing them. The vendor’s
instructions should be consulted instead.

If you have problems with an RPM file (for example, if you receive the error “Sorry, the
host ’xxxx’ could not be looked up”), see Section 2.6.1.2 [Binary notes-Linux|, page 148.

In most cases, you only need to install the MySQL-server and MySQL-client packages to
get a functional MySQL installation. The other packages are not required for a standard
installation. If you want to run a MySQL-Max server that has additional capabilities, you
should also install the MySQL-Max RPM. However, you should do so only after installing
the MySQL-server RPM. See Section 5.1.2 [mysqld-max], page 230.

If you get a dependency failure when trying to install the MySQL 4.0 packages (for example,
“error: removing these packages would break dependencies: libmysqlclient.so.10
is needed by ...”), you should also install the package MySQL-shared-compat, which
includes both the shared libraries for backward compatibility (1ibmysqlclient.so.12 for
MySQL 4.0 and 1ibmysqlclient.so.10 for MySQL 3.23).

Many Linux distributions still ship with MySQL 3.23 and they usually link applications
dynamically to save disk space. If these shared libraries are in a separate package (for
example, MySQL-shared), it is sufficient to simply leave this package installed and just
upgrade the MySQL server and client packages (which are statically linked and do not
depend on the shared libraries). For distributions that include the shared libraries in the

Chapter 2: Installing MySQL 91

same package as the MySQL server (for example, Red Hat Linux), you could either install
our 3.23 MySQL-shared RPM, or use the MySQL-shared-compat package instead.

The following RPM packages are available:
e MySQL-server-VERSION.i386.rpm

The MySQL server. You will need this unless you only want to connect to a MySQL
server running on another machine. Note: Server RPM files were called MySQL-
VERSION.1386.rpm before MySQL 4.0.10. That is, they did not have -server in the
name.

e MySQL-Max-VERSION.i386.rpm

The MySQL-Max server. This server has additional capabilities that the one provided
in the MySQL-server RPM does not. You must install the MySQL-server RPM first,
because the MySQL-Max RPM depends on it.

e MySQL-client-VERSION.i386.rpm

The standard MySQL client programs. You probably always want to install this pack-
age.

e MySQL-bench-VERSION.i386.rpm
Tests and benchmarks. Requires Perl and the DBD: :mysql module.
e MySQL-devel-VERSION.i386.rpm

The libraries and include files that are needed if you want to compile other MySQL
clients, such as the Perl modules.

e MySQL-shared-VERSION.i386.rpm

This package contains the shared libraries (1ibmysqlclient.so*) that certain lan-
guages and applications need to dynamically load and use MySQL.

e MySQL-shared-compat-VERSION.i386.rpm

This package includes the shared libraries for both MySQL 3.23 and MySQL 4.0. In-
stall this package instead of MySQL-shared if you have applications installed that are
dynamically linked against MySQL 3.23 but you want to upgrade to MySQL 4.0 with-
out breaking the library dependencies. This package has been available since MySQL
4.0.13.

e MySQL-embedded-VERSION.i386.rpm
The embedded MySQL server library (from MySQL 4.0).
e MySQL-VERSION.src.rpm
This contains the source code for all of the previous packages. It can also be used to
rebuild the RPMs on other architectures (for example, Alpha or SPARC).
To see all files in an RPM package (for example, a MySQL-server RPM), run:
shell> rpm -gpl MySQL-server-VERSION.i386.rpm
To perform a standard minimal installation, run:

shell> rpm -i MySQL-server-VERSION.i386.rpm
shell> rpm -i MySQL-client-VERSION.i386.rpm

To install just the client package, run:

92 MySQL Technical Reference for Version 5.0.0-alpha

shell> rpm -i MySQL-client-VERSION.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing
them. If you would like to learn more about this feature, see Section 2.1.4 [Verifying Package
Integrity], page 73.

The server RPM places data under the ‘/var/lib/mysql’ directory. The RPM also creates
a login account for a user named mysql (if one does not already exist) to use for running the
MySQL server, and creates the appropriate entries in ‘/etc/init.d/’ to start the server
automatically at boot time. (This means that if you have performed a previous installation
and have made changes to its startup script, you may want to make a copy of the script
so that you don’t lose it when you install a newer RPM.) See Section 2.4.2.2 [Automatic
start], page 124 for more information on how MySQL can be started automatically on
system startup.

If you want to install the MySQL RPM on older Linux distributions that do not support
initialization scripts in ‘/etc/init.d’ (directly or via a symlink), you should create a sym-
bolic link that points to the location where your initialization scripts actually are installed.
For example, if that location is ‘/etc/rc.d/init.d’, use these commands before installing
the RPM to create ‘/etc/init.d’ as a symbolic link that points there:

shell> cd /etc
shell> 1n -s rc.d/init.d .

However, all current major Linux distributions should already support the new directory
layout that uses ‘/etc/init.d’, because it is required for LSB (Linux Standard Base)
compliance.

If the RPM files that you install include MySQL-server, the mysqld server should be up
and running after installation. You should now be able to start using MySQL.

If something goes wrong, you can find more information in the binary installation section.
See Section 2.2.5 [Installing binary]|, page 97.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the instructions in
Section 2.4 [Post-installation|, page 117.

2.2.3 Installing MySQL on Mac OS X

Beginning with MySQL 4.0.11, you can install MySQL on Mac OS X 10.2.x (“Jaguar”)
and up using a Mac OS X binary package in PKG format instead of the binary tarball
distribution. Please note that older versions of Mac OS X (for example, 10.1.x) are not
supported by this package.

The package is located inside a disk image (.dmg) file that you first need to mount by
double-clicking its icon in the Finder. It should then mount the image and display its
contents.

To obtain MySQL, see Section 2.1.3 [Getting MySQL], page 73.

Note: Before proceeding with the installation, be sure to shut down all running MySQL
server instances by either using the MySQL Manager Application (on Mac OS X Server) or
via mysqladmin shutdown on the command line.

Chapter 2: Installing MySQL 93

To actually install the MySQL PKG file, double-click on the package icon. This launches
the Mac OS X Package Installer, which will guide you through the installation of MySQL.

Due to a bug in the Mac OS X package installer, you may see this error message in the
destination disk selection dialog:

You cannot install this software on this disk. (null)

If this error occurs, simply click the Go Back button once to return to the previous screen.
Then click Continue to advance to the destination disk selection again, and you should be
able to choose the destination disk correctly. We have reported this bug to Apple and it is
investigating this problem.

The Mac OS X PKG of MySQL will install itself into ‘/usr/local/mysql-VERSION’ and will
also install a symbolic link, ‘/usr/local/mysql’, pointing to the new location. If a directory
named ‘/usr/local/mysql’ already exists, it will be renamed to ‘/usr/local/mysql.bak’
first. Additionally, the installer will create the grant tables in the mysql database by
executing mysql_install_db after the installation.

The installation layout is similar to that of a tar file binary distribution; all MySQL binaries
are located in the directory ‘/usr/local/mysql/bin’. The MySQL socket file is created as
‘/tmp/mysql.sock’ by default. See Section 2.1.5 [Installation layouts|, page 76.

MySQL installation requires a Mac OS X user account named mysql. A user account with
this name should exist by default on Mac OS X 10.2 and up.

If you are running Mac OS X Server, you already have a version of MySQL installed. The
versions of MySQL that ship with Mac OS X Server versions are shown in the following
table:

Mac OS X Server Version MySQL Version

10.2-10.2.2 3.23.51
10.2.3-10.2.6 3.23.53
10.3 4.0.14
10.3.2 4.0.16

This manual section covers the installation of the official MySQL Mac OS X PKG only.
Make sure to read Apple’s help information about installing MySQL: Run the “Help View”
application, select “Mac OS X Server” help, do a search for “MySQL,” and read the item
entitled “Installing MySQL.”

For pre-installed versions of MySQL on Mac OS X Server, note especially that you should
start mysqld with safe_mysqld instead of mysqld_safe if MySQL is older than version 4.0.

If you previously used Marc Liyanage’s MySQL packages for Mac OS X from
http://www.entropy.ch, you can simply follow the update instructions for packages using
the binary installation layout as given on his pages.

If you are upgrading from Marc’s 3.23.xx versions or from the Mac OS X Server version of
MySQL to the official MySQL PKG, you also need to convert the existing MySQL privilege
tables to the current format, because some new security privileges have been added. See
Section 2.5.8 [Upgrading-grant-tables]|, page 146.

If you would like to automatically start up MySQL during system startup, you also need
to install the MySQL Startup Item. Starting with MySQL 4.0.15, it is part of the Mac
OS X installation disk images as a separate installation package. Simply double-click the
MySQLStartupItem.pkg icon and follow the instructions to install it.

94 MySQL Technical Reference for Version 5.0.0-alpha

Note that the Startup Item need be installed only once! There is no need to install it each
time you upgrade the MySQL package later.

The Startup Item will be installed into ‘/Library/StartupItems/MySQLCOM’. (Before
MySQL 4.1.2, the location was ‘/Library/StartupItems/MySQL’, but that collided with
the MySQL Startup Item installed by Mac OS X Server.) Startup Item installation adds a
variable MYSQLCOM=-YES- to the system configuration file ‘/etc/hostconfig’. If you would
like to disable the automatic startup of MySQL, simply change this variable to MYSQLCOM=-
NO-.

On Mac OS X Server, the default MySQL installation uses the variable MYSQL in the
‘/etc/hostconfig’ file. The MySQL AB Startup Item installer disables this variable by
setting it to MYSQL=-NO-. This avoids boot time conflicts with the MYSQLCOM variable used
by the MySQL AB Startup Item. However, it does not shut down an already running
MySQL server. You should do that yourself.

After the installation, you can start up MySQL by running the following commands in a
terminal window. You must have administrator privileges to perform this task.

If you have installed the Startup Item:

shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
(Enter your password, if necessary)
(Press Control-D or enter "exit" to exit the shell)

For versions of MySQL older than 4.1.3, substitute /Library/StartupItems/MySQLCOM/MySQLCOM}
with /Library/StartupItems/MySQL/MySQL above.

If you don’t use the Startup Item, enter the following command sequence:

shell> cd /usr/local/mysql

shell> sudo ./bin/mysqld_safe

(Enter your password, if necessary)

(Press Control-Z)

shell> bg

(Press Control-D or enter "exit" to exit the shell)

You should now be able to connect to the MySQL server, for example, by running
‘/usr/local/mysql/bin/mysql’.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the instructions in
Section 2.4 [Post-installation|, page 117.

You might want to add aliases to your shell’s resource file to make it easier to access
commonly used programs such as mysql and mysqladmin from the command line. The
syntax for tcsh is:

alias mysql /usr/local/mysql/bin/mysql

alias mysqladmin /usr/local/mysql/bin/mysqladmin
For bash, use:

alias mysql=/usr/local/mysql/bin/mysql

alias mysqladmin=/usr/local/mysql/bin/mysqladmin
Even better, add /usr/local/mysql/bin to your PATH environment variable. For example,
add the following line to your ‘$HOME/.tcshrc’ file if your shell is tcsh:

Chapter 2: Installing MySQL 95

setenv PATH ${PATH}:/usr/local/mysql/bin
If no ‘.teshrc’ file exists in your home directory, create it with a text editor.

If you are upgrading an existing installation, please note that installing a new MySQL
PKG does not remove the directory of an older installation. Unfortunately, the Mac OS
X Installer does not yet offer the functionality required to properly upgrade previously
installed packages.

To use your existing databases with the new installation, you’ll need to copy the con-
tents of the old data directory to the new data directory. Make sure that neither the
old server nor the new one is running when you do this. After you have copied over the
MySQL database files from the previous installation and have successfully started the new
server, you should consider removing the old installation files to save disk space. Addition-
ally, you should also remove older versions of the Package Receipt directories located in
‘/Library/Receipts/mysql-VERSION.pkg’ .

2.2.4 Installing MySQL on NetWare

Porting MySQL to NetWare was an effort spearheaded by Novell. Novell customers will be
pleased to note that NetWare 6.5 ships with bundled MySQL binaries, complete with an
automatic commercial use license for all servers running that version of NetWare.

MySQL for NetWare is compiled using a combination of Metrowerks CodeWarrior for
NetWare and special cross-compilation versions of the GNU autotools.

The latest binary packages for Net Ware can be obtained at http://dev.mysql.com/downloads/.|]

See Section 2.1.3 [Getting MySQL], page 73.
In order to host MySQL, the NetWare server must meet these requirements:

e NetWare version 6.5 Support Pack 2 (you can find this and other updates at
http://support.novell.com/filefinder/18197/index.html) Updated with the

latest LibC (http://developer.novell.com/ndk/doc/libc/index.html?page=/ndk/doc/1libc/1ib

enu/data/ajjl0r0.html) or NetWare 6.0 with Support Pack 4 installed (you can ob-
tain this at http://support.novell.com/filefinder/13659/index.html) updated

with the latest LibC (http://developer.novell.com/ndk/doc/libc/index.html?page=/ndk/doc/1

enu/data/ajjl0r0.html)

e The system must meet Novell’s minimum requirements to run the respective version of
NetWare.

e MySQL data, as well as the binaries themselves, must be installed on an NSS volume;
traditional volumes are not supported.
To install MySQL for NetWare, use the following procedure:

1. If you are upgrading from a prior installation, stop the MySQL server. This is done
from the server console, using the following command:

SERVER: mysqladmin -u root shutdown

2. Log on to the target server from a client machine with access to the location where you
will install MySQL.

3. Extract the binary package Zip file onto the server. Be sure to allow the paths in the
Zip file to be used. It is safe to simply extract the file to ‘SYS:\’.

96 MySQL Technical Reference for Version 5.0.0-alpha

If you are upgrading from a prior installation, you may need to copy the data directory
(for example, ‘SYS:MYSQL\DATA’) now, as well as ‘my.cnf’, if you have customized it.
You can then delete the old copy of MySQL.

4. You might want to rename the directory to something more consistent and easy to use.
We recommend using ‘SYS:MYSQL’; examples in this manual use this name to refer to
the installation directory in general.

5. At the server console, add a search path for the directory containing the MySQL NLMs.
For example:

SERVER: SEARCH ADD SYS:MYSQL\BIN

6. Initialize the data directory and the grant tables, if needed, by executing mysql_
install_db at the server console.

7. Start the MySQL server using mysqld_safe at the server console.

8. To finish the installation, you should also add the following commands to
autoexec.ncf. For example, if your MySQL installation is in ‘SYS:MYSQL’ and you
want MySQL to start automatically, you could add these lines:

#Starts the MySQL 4.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE

If you are running MySQL on NetWare 6.0, we strongly suggest that you use the
--skip-external-locking option on the command line:

#Starts the MySQL 4.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --skip-external-locking

It will also be necessary to use CHECK TABLE and REPAIR TABLE instead of myisamchk,
because myisamchk makes use of external locking. External locking is known to have
problems on NetWare 6.0; the problem has been eliminated in NetWare 6.5.
mysqld_safe on NetWare provides a screen presence. When you unload (shut down)
the mysqld_safe NLM, the screen does not by default go away. Instead, it prompts
for user input:

<NLM has terminated; Press any key to close the screen>

If you want NetWare to close the screen automatically instead, use the -—autoclose
option to mysqld_safe. For example:
#Starts the MySQL 4.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --autoclose
9. The latest Netware Perl and PHP modules for MySQL can be downloaded from

http://developer.novell.com/ndk/perl5.htmand http://developer.novell.com/ndk/php2.htr
respectively.

The behavior of mysqld_safe on NetWare is described further in Section 5.1.3 [mysqld_
safe|, page 232.

If there was an existing installation of MySQL on the server, be sure to check for existing
MySQL startup commands in autoexec.ncf, and edit or delete them as necessary.

Chapter 2: Installing MySQL 97

Note: The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the instructions in
Section 2.4 [Post-installation|, page 117.

2.2.5 Imnstalling MySQL on Other Unix-Like Systems

This section covers the installation of MySQL binary distributions that are provided for
various platforms in the form of compressed tar files (files with a .tar.gz extension). See
Section 2.1.2.5 [MySQL binaries|, page 67 for a detailed list.

To obtain MySQL, see Section 2.1.3 [Getting MySQL], page 73.

MySQL tar file binary distributions have names of the form ‘mysql-VERSION-0S.tar.gz’,
where VERSION is a number (for example, 4.0.17), and OS indicates the type of operating
system for which the distribution is intended (for example, pc-1inux-i686).

In addition to these generic packages, we also offer binaries in platform-specific package
formats for selected platforms. See Section 2.2 [Quick Standard Installation], page 77 for
more information on how to install these.

You need the following tools to install a MySQL tar file binary distribution:
e GNU gunzip to uncompress the distribution.

e A reasonable tar to unpack the distribution. GNU tar is known to work. Some
operating systems come with a pre-installed version of tar that is known to have
problems. For example, Mac OS X tar and Sun tar are known to have problems with
long filenames. On Mac OS X, you can use the pre-installed gnutar program. On
other systems with a deficient tar, you should install GNU tar first.

If you run into problems, please always use mysqlbug when posting questions to a MySQL
mailing list. Even if the problem isn’t a bug, mysqlbug gathers system information that
will help others solve your problem. By not using mysqlbug, you lessen the likelihood of
getting a solution to your problem. You will find mysqlbug in the ‘bin’ directory after you
unpack the distribution. See Section 1.7.1.3 [Bug reports], page 35.

The basic commands you must execute to install and use a MySQL binary distribution are:

shell> groupadd mysql

shell> useradd -g mysql mysql

shell> cd /usr/local

shell> gunzip < /path/to/mysql-VERSION-0S.tar.gz | tar xvf -

shell> 1n -s full-path-to-mysql-VERSION-0S mysql

shell> cd mysql

shell> scripts/mysql_install_db --user=mysql

shell> chown -R root

shell> chown -R mysql data

shell> chgrp -R mysql .

shell> bin/mysqld_safe --user=mysql &
For versions of MySQL older than 4.0, substitute bin/safe_mysqld for bin/mysqld_safe
in the final command.

Note: This procedure does not set up any passwords for MySQL accounts. After following
the procedure, proceed to Section 2.4 [Post-installation|, page 117.

98 MySQL Technical Reference for Version 5.0.0-alpha

A more detailed version of the preceding description for installing a binary distribution
follows:

1. Add a login user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd
and groupadd may differ slightly on different versions of Unix. They may also be called
adduser and addgroup.

You might want to call the user and group something else instead of mysql. If so,
substitute the appropriate name in the following steps.

2. Pick the directory under which you want to unpack the distribution, and change loca-
tion into it. In the following example, we unpack the distribution under ‘/usr/local’.
(The instructions, therefore, assume that you have permission to create files and di-
rectories in ‘/usr/local’. If that directory is protected, you will need to perform the
installation as root.)

shell> cd /usr/local

3. Obtain a distribution file from one of the sites listed in Section 2.1.3 [Getting MySQL],
page 73. For a given release, binary distributions for all platforms are built from the
same MySQL source distribution.

4. Unpack the distribution, which will create the installation directory. Then create a
symbolic link to that directory:

shell> gunzip < /path/to/mysql-VERSION-0S.tar.gz | tar xvf -
shell> 1n -s full-path-to-mysql-VERSION-0S mysql

The tar command creates a directory named ‘mysql-VERSION-0S’. The 1n command
makes a symbolic link to that directory. This lets you refer more easily to the instal-
lation directory as ‘/usr/local/mysql’.

With GNU tar, no separate invocation of gunzip is necessary. You can replace the first
line with the following alternative command to uncompress and extract the distribution:
shell> tar zxvf /path/to/mysql-VERSION-0S.tar.gz
5. Change location into the installation directory:
shell> cd mysql
You will find several files and subdirectories in the mysql directory. The most important
for installation purposes are the ‘bin’ and ‘scripts’ subdirectories.

‘bin’ This directory contains client programs and the server. You should add
the full pathname of this directory to your PATH environment variable so
that your shell finds the MySQL programs properly. See Appendix E
[Environment variables|, page 1288.

‘scripts’ This directory contains the mysql_install_db script used to initialize the
mysql database containing the grant tables that store the server access
permissions.

6. If you haven’t installed MySQL before, you must create the MySQL grant tables:
shell> scripts/mysql_install_db --user=mysql

Chapter 2: Installing MySQL 99

If you run the command as root, you should use the —-—user option as shown. The
value of the option should be the name of the login account that you created in the
first step to use for running the server. If you run the command while logged in as that
user, you can omit the ——user option.

Note that for MySQL versions older than 3.22.10, mysql_install_db left the server
running after creating the grant tables. This is no longer true; you will need to restart
the server after performing the remaining steps in this procedure.

7. Change the ownership of program binaries to root and ownership of the data direc-
tory to the user that you will run mysqld as. Assuming that you are located in the
installation directory (‘/usr/local/mysql’), the commands look like this:

shell> chown -R root
shell> chown -R mysql data
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the root user. The
second changes the owner attribute of the data directory to the mysql user. The third
changes the group attribute to the mysql group.

8. If you would like MySQL to start automatically when you boot your machine, you can
copy support-files/mysql.server to the location where your system has its startup
files. More information can be found in the support-files/mysql.server script itself
and in Section 2.4.2.2 [Automatic start], page 124.

9. You can set up new accounts using the bin/mysql_setpermission script if you install
the DBI and DBD: :mysql Perl modules. For instructions, see Section 2.7 [Perl support],
page 177.

10. If you would like to use mysqlaccess and have the MySQL distribution in some non-
standard place, you must change the location where mysqlaccess expects to find the
mysql client. Edit the ‘bin/mysqlaccess’ script at approximately line 18. Search for
a line that looks like this:

$MYSQL = ’/usr/local/bin/mysql’; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system.
If you do not do this, you will get a Broken pipe error when you run mysqlaccess.

After everything has been unpacked and installed, you should test your distribution.
You can start the MySQL server with the following command:
shell> bin/mysqld_safe --user=mysql &

For versions of MySQL older than 4.0, substitute bin/safe_mysqld for bin/mysqld_safe
in the command.

More information about mysqld_safe is given in Section 5.1.3 [mysqld_safe|, page 232.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the instructions in
Section 2.4 [Post-installation|, page 117.

100 MySQL Technical Reference for Version 5.0.0-alpha

2.3 MySQL Installation Using a Source Distribution

Before you proceed with the source installation, check first to see whether our binary is
available for your platform and whether it will work for you. We put a lot of effort into
making sure that our binaries are built with the best possible options.

To obtain a source distribution for MySQL, Section 2.1.3 [Getting MySQL], page 73.

MySQL source distributions are provided as compressed tar archives and have names of
the form ‘mysql-VERSION.tar.gz’, where VERSION is a number like 5.0.0-alpha.

You need the following tools to build and install MySQL from source:
e GNU gunzip to uncompress the distribution.

e A reasonable tar to unpack the distribution. GNU tar is known to work. Some
operating systems come with a pre-installed version of tar that is known to have
problems. For example, Mac OS X tar and Sun tar are known to have problems with
long filenames. On Mac OS X, you can use the pre-installed gnutar program. On
other systems with a deficient tar, you should install GNU tar first.

e A working ANSI C++ compiler. gcc 2.95.2 or later, egcs 1.0.2 or later or egcs 2.91.66,
SGI C++, and SunPro C++ are some of the compilers that are known to work. 1ibg++
is not needed when using gcc. gcc 2.7.x has a bug that makes it impossible to compile
some perfectly legal C++ files, such as ‘sql/sql_base.cc’. If you have only gcc 2.7.x,
you must upgrade your gcc to be able to compile MySQL. gcc 2.8.1 is also known to
have problems on some platforms, so it should be avoided if a new compiler exists for
the platform.

gce 2.95.2 or later is recommended when compiling MySQL 3.23.x.

e A good make program. GNU make is always recommended and is sometimes required.
If you have problems, we recommend trying GNU make 3.75 or newer.

If you are using a version of gcc recent enough to understand the -fno-exceptions option,
it is very important that you use this option. Otherwise, you may compile a binary that
crashes randomly. We also recommend that you use -felide-constructors and -fno-
rtti along with ~-fno-exceptions. When in doubt, do the following:

CFLAGS="-03" CXX=gcc CXXFLAGS="-03 -felide-constructors \
-fno-exceptions -fno-rtti" ./configure \
—--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

On most systems, this will give you a fast and stable binary.

If you run into problems, please always use mysqlbug when posting questions to a MySQL
mailing list. Even if the problem isn’t a bug, mysqlbug gathers system information that
will help others solve your problem. By not using mysqlbug, you lessen the likelihood of
getting a solution to your problem. You will find mysqlbug in the ‘scripts’ directory after
you unpack the distribution. See Section 1.7.1.3 [Bug reports], page 35.

2.3.1 Source Installation Overview

The basic commands you must execute to install a MySQL source distribution are:

Chapter 2: Installing MySQL 101

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> gunzip < mysql-VERSION.tar.gz | tar -xvf -
shell> cd mysql-VERSION
shell> ./configure --prefix=/usr/local/mysql
shell> make
shell> make install
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> cd /usr/local/mysql
shell> bin/mysql_install_db --user=mysql
shell> chown -R root
shell> chown -R mysql var
shell> chgrp -R mysql .
shell> bin/mysqld_safe --user=mysql &
For versions of MySQL older than 4.0, substitute bin/safe_mysqld for bin/mysqld_safe
in the final command.

If you start from a source RPM, do the following;:
shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

This will make a binary RPM that you can install. For older versions of RPM, you may
have to replace the command rpmbuild with rpm instead.

Note: This procedure does not set up any passwords for MySQL accounts. After following
the procedure, proceed to Section 2.4 [Post-installation], page 117, for post-installation
setup and testing.

A more detailed version of the preceding description for installing MySQL from a source
distribution follows:

1. Add a login user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd
and groupadd may differ slightly on different versions of Unix. They may also be called
adduser and addgroup.

You might want to call the user and group something else instead of mysql. If so,
substitute the appropriate name in the following steps.

2. Pick the directory under which you want to unpack the distribution, and change loca-
tion into it.

3. Obtain a distribution file from one of the sites listed in Section 2.1.3 [Getting MySQL],
page 73.

4. Unpack the distribution into the current directory:
shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -
This command creates a directory named ‘mysql-VERSION’.

With GNU tar, no separate invocation of gunzip is necessary. You can use the fol-
lowing alternative command to uncompress and extract the distribution:

shell> tar zxvf /path/to/mysql-VERSION-0S.tar.gz

102

10.

MySQL Technical Reference for Version 5.0.0-alpha

Change location into the top-level directory of the unpacked distribution:
shell> cd mysql-VERSION
Note that currently you must configure and build MySQL from this top-level directory.
You cannot build it in a different directory.
Configure the release and compile everything:
shell> ./configure --prefix=/usr/local/mysql
shell> make

When you run configure, you might want to specify some options. Run ./configure
--help for a list of options. Section 2.3.2 [configure options|, page 103, discusses
some of the more useful options.
If configure fails and you are going to send mail to a MySQL mailing list to ask for
assistance, please include any lines from ‘config.log’ that you think can help solve
the problem. Also include the last couple of lines of output from configure. Post the
bug report using the mysqlbug script. See Section 1.7.1.3 [Bug reports], page 35.
If the compile fails, see Section 2.3.4 [Compilation problems]|, page 109 for help.
Install the distribution:

shell> make install

If you want to set up an option file, use one of those present in the ‘support-files’
directory as a template. For example:

shell> cp support-files/my-medium.cnf /etc/my.cnf
You might need to run these commands as root.

If you want to configure support for InnoDB tables, you should edit the /etc/my.cnf
file, remove the # character before the option lines that start with innodb_..., and
modify the option values to be what you want. See Section 4.3.2 [Option files|, page 223
and Section 16.4 [InnoDB configuration|, page 788.

Change location into the installation directory:
shell> cd /usr/local/mysql

If you haven’t installed MySQL before, you must create the MySQL grant tables:
shell> bin/mysql_install_db --user=mysql

If you run the command as root, you should use the --user option as shown. The
value of the option should be the name of the login account that you created in the
first step to use for running the server. If you run the command while logged in as that
user, you can omit the ——user option.

Note that for MySQL versions older than 3.22.10, mysql_install_db left the server
running after creating the grant tables. This is no longer true; you will need to restart
the server after performing the remaining steps in this procedure.

Change the ownership of program binaries to root and ownership of the data direc-
tory to the user that you will run mysqld as. Assuming that you are located in the
installation directory (‘/usr/local/mysql’), the commands look like this:

shell> chown -R root
shell> chown -R mysql var
shell> chgrp -R mysql .

Chapter 2: Installing MySQL 103

The first command changes the owner attribute of the files to the root user. The
second changes the owner attribute of the data directory to the mysql user. The third
changes the group attribute to the mysql group.

11. If you would like MySQL to start automatically when you boot your machine, you can
copy support-files/mysql.server to the location where your system has its startup
files. More information can be found in the support-files/mysql.server script itself
and in Section 2.4.2.2 [Automatic start], page 124.

12. You can set up new accounts using the bin/mysql_setpermission script if you install
the DBI and DBD: :mysql Perl modules. For instructions, see Section 2.7 [Perl support],
page 177.

After everything has been installed, you should initialize and test your distribution using
this command:

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

For versions of MySQL older than 4.0, substitute safe_mysqld for mysqld_safe in the
command.

If that command fails immediately and prints mysqld ended, you can find some information
in the ‘host_name.err’ file in the data directory.

More information about mysqld_safe is given in Section 5.1.3 [mysqld_safe|, page 232.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the instructions in
Section 2.4 [Post-installation], page 117.

2.3.2 Typical configure Options

The configure script gives you a great deal of control over how you configure a MySQL
source distribution. Typically you do this using options on the configure command line.
You can also affect configure using certain environment variables. See Appendix E [En-
vironment variables], page 1288. For a list of options supported by configure, run this
command:

shell> ./configure --help
Some of the more commonly used configure options are described here:

e To compile just the MySQL client libraries and client programs and not the server, use
the --without-server option:

shell> ./configure --without-server

If you don’t have a C++ compiler, mysql will not compile (it is the one client program
that requires C++). In this case, you can remove the code in configure that tests
for the C++ compiler and then run ./configure with the ——without-server option.
The compile step will still try to build mysql, but you can ignore any warnings about
‘mysql.cc’. (If make stops, try make -k to tell it to continue with the rest of the build
even if errors occur.)

e If you want to build the embedded MySQL library (1ibmysqld.a) you should use the
--with-embedded-server option.

104 MySQL Technical Reference for Version 5.0.0-alpha

e If you don’t want your log files and database directories located under
‘/usr/local/var’, use a configure command something like one of these:

shell> ./configure --prefix=/usr/local/mysql
shell> ./configure --prefix=/usr/local \
--localstatedir=/usr/local/mysql/data

The first command changes the installation prefix so that everything is installed under
‘/usr/local/mysql’ rather than the default of ‘/usr/local’. The second command
preserves the default installation prefix, but overrides the default location for database
directories (normally ‘/usr/local/var’) and changes it to /usr/local/mysql/data.
After you have compiled MySQL, you can change these options with option files. See
Section 4.3.2 [Option files], page 223.

e If you are using Unix and you want the MySQL socket located somewhere other than
the default location (normally in the directory ‘/tmp’ or ‘/var/run’), use a configure
command like this:

shell> ./configure \
--with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock
The socket filename must be an absolute pathname. You can also change the location
of ‘mysql.sock’ later by using a MySQL option file. See Section A.4.5 [Problems with
‘mysql.sock’], page 1084.

e If you want to compile statically linked programs (for example, to make a binary
distribution, to get more speed, or to work around problems with some Red Hat Linux
distributions), run configure like this:

shell> ./configure --with-client-1ldflags=-all-static \
--with-mysqld-ldflags=-all-static
e If you are using gcc and don’t have libg++ or libstdc++ installed, you can tell
configure to use gcc as your C++ compiler:
shell> CC=gcc CXX=gcc ./configure

When you use gcc as your C++ compiler, it will not attempt to link in libg++ or
libstdc++. This may be a good idea to do even if you have these libraries installed,
because some versions of them have caused strange problems for MySQL users in the
past.

The following list indicates some compilers and environment variable settings that are
commonly used with each one.

gcc 2.7.2:
CC=gcc CXX=gcc CXXFLAGS="-03 -felide-constructors"
eges 1.0.3a:
CC=gcc CXX=gcc CXXFLAGS="-03 -felide-constructors \
-fno-exceptions -fno-rtti"
gece 2.95.2:

CFLAGS="-03 -mpentiumpro" CXX=gcc CXXFLAGS="-03 -mpentiumpro \|j
-felide-constructors -fno-exceptions -fno-rtti"

pgcc 2.90.29 or newer:
CFLAGS="-03 -mpentiumpro -mstack-align-double" CXX=gcc \

Chapter 2: Installing MySQL 105

CXXFLAGS="-03 -mpentiumpro -mstack-align-double \
-felide-constructors -fno-exceptions -fno-rtti"

In most cases, you can get a reasonably optimized MySQL binary by using the options
from the preceding list and adding the following options to the configure line:

—--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static
The full configure line would, in other words, be something like the following for all
recent gcc versions:

CFLAGS="-03 -mpentiumpro" CXX=gcc CXXFLAGS="-03 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static
The binaries we provide on the MySQL Web site at http://www.mysql.com/ are all
compiled with full optimization and should be perfect for most users. See Section 2.1.2.5
[MySQL binaries|, page 67. There are some configuration settings you can tweak to
make an even faster binary, but these are only for advanced users. See Section 7.5.4
[Compile and link options], page 460.
If the build fails and produces errors about your compiler or linker not being able to
create the shared library ‘libmysqlclient.so.#’ (where ‘#’ is a version number), you
can work around this problem by giving the —--~disable-shared option to configure.
In this case, configure will not build a shared ‘libmysqlclient.so.#’ library.

e You can configure MySQL not to use DEFAULT column values for non-NULL columns
(that is, columns that are not allowed to be NULL). See Section 1.8.6.2 [constraint
NOT NULL], page 52.

shell> CXXFLAGS=-DDONT_USE_DEFAULT_FIELDS ./configure
The effect of this flag is to cause any INSERT statement to fail unless it includes explicit
values for all columns that require a non-NULL value.

e By default, MySQL uses the latinl (ISO-8859-1) character set. To change the default
set, use the ——with-charset option:

shell> ./configure --with-charset=CHARSET
CHARSET may be one of bigh, cp1251, cp1257, czech, danish, dec8, dos, euc_kr,
gb2312, gbk, germanl, hebrew, hp8, hungarian, koi8_ru, koi8_ukr, latinl, latin2,
sjis, swe7, tis620, ujis, usa7, or winl251ukr. See Section 5.8.1 [Character sets],
page 354.
As of MySQL 4.1.1, the default collation may also be specified. MySQL uses the
latinl_swedish_ci collation. To change this, use the ——with-collation option:
shell> ./configure --with-collation=COLLATION
To change both the character set and the collation, use both the --with-charset and
--with-collation options. The collation must be a legal collation for the character

set. (Use the SHOW COLLATION statement to determine which collations are available
for each character set.)

If you want to convert characters between the server and the client, you should take a
look at the SET CHARACTER SET statement. See Section 14.5.3.1 [SET], page 730.

106 MySQL Technical Reference for Version 5.0.0-alpha

Warning: If you change character sets after having created any tables, you will have to
run myisamchk -r -q --set-character-set=charset on every table. Your indexes
may be sorted incorrectly otherwise. (This can happen if you install MySQL, create
some tables, then reconfigure MySQL to use a different character set and reinstall it.)

With the configure option --with-extra-charsets=LIST, you can define which ad-
ditional character sets should be compiled into the server. LIST is either a list of
character set names separated by spaces, complex to include all character sets that
can’t be dynamically loaded, or all to include all character sets into the binaries.

e To configure MySQL with debugging code, use the -—with-debug option:
shell> ./configure --with-debug

This causes a safe memory allocator to be included that can find some errors and
that provides output about what is happening. See Section D.1 [Debugging server],
page 1278.

e If your client programs are using threads, you also must compile a thread-safe version of
the MySQL client library with the —-enable-thread-safe-client configure option.
This will create a 1ibmysqlclient_r library with which you should link your threaded
applications. See Section 21.2.14 [Threaded clients], page 1008.

e Options that pertain to particular systems can be found in the system-specific section
of this manual. See Section 2.6 [Operating System Specific Notes|, page 148.

2.3.3 Installing from the Development Source Tree

Caution: You should read this section only if you are interested in helping us test our new
code. If you just want to get MySQL up and running on your system, you should use a
standard release distribution (either a binary or source distribution will do).

To obtain our most recent development source tree, use these instructions:

1. Download BitKeeper from http://www.bitmover.com/cgi-bin/download.cgi. You
will need Bitkeeper 3.0 or newer to access our repository.

2. Follow the instructions to install it.

3. After BitKeeper has been installed, first go to the directory you want to work from,
and then use one of the following commands to clone the MySQL version branch of
your choice:

To clone the old 3.23 branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-3.23 mysql-3.23
To clone the 4.0 stable (production) branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-4.0 mysql-4.0
To clone the 4.1 beta branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-4.1 mysql-4.1
To clone the 5.0 development branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-5.0 mysql-5.0

In the preceding examples, the source tree will be set up in the ‘mysql-3.23/’,
‘mysql-4.0/’, ‘mysql-4.1/’, or ‘mysql-5.0/" subdirectory of your current directory.

Chapter 2: Installing MySQL 107

If you are behind a firewall and can only initiate HTTP connections, you can also use
BitKeeper via HTTP.

If you are required to use a proxy server, set the environment variable http_proxy to
point to your proxy:

shell> export http_proxy="http://your.proxy.server:8080/"
Now, simply replace the bk:// with http:// when doing a clone. Example:

shell> bk clone http://mysql.bkbits.net/mysql-4.1 mysql-4.1

The initial download of the source tree may take a while, depending on the speed of
your connection. Please be patient.

4. You will need GNU make, autoconf 2.53 (or newer), automake 1.5, libtool 1.5, and
m4 to run the next set of commands. Even though many operating systems already
come with their own implementation of make, chances are high that the compilation
will fail with strange error messages. Therefore, it is highly recommended that you use
GNU make (sometimes named gmake) instead.

Fortunately, a large number of operating systems already ship with the GNU toolchain
preinstalled or supply installable packages of these. In any case, they can also be
downloaded from the following locations:

e http://www.gnu.org/software/autoconf/
e http://www.gnu.org/software/automake/
e http://www.gnu.org/software/libtool/
e http://www.gnu.org/software/mé/

e http://www.gnu.org/software/make/

If you are trying to configure MySQL 4.1 or later, you will also need GNU bison 1.75
or later. Older versions of bison may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

Note: The maximum table size is not actually exceeded; the error is caused by bugs in
older versions of bison.

Versions of MySQL before version 4.1 may also compile with other yacc implementa-
tions (for example, BSD yacc 91.7.30). For later versions, GNU bison is required.

The following example shows the typical commands required to configure a source tree.
The first cd command changes location into the top-level directory of the tree; replace
‘mysql-4.0’ with the appropriate directory name.

shell> cd mysql-4.0

shell> bk -r edit

shell> aclocal; autoheader; autoconf; automake

shell> (cd innobase; aclocal; autoheader; autoconf; automake)
shell> (cd bdb/dist; sh s_all)

shell> ./configure # Add your favorite options here

make

The command lines that change directory into the ‘innobase’ and ‘bdb/dist’ directo-
ries are used to configure the InnoDB and Berkeley DB (BDB) storage engines. You can
omit these command lines if you to not require InnoDB or BDB support.

108

10.
11.

MySQL Technical Reference for Version 5.0.0-alpha

If you get some strange errors during this stage, verify that you really have 1ibtool
installed.

A collection of our standard configuration scripts is located in the ‘BUILD/’ subdirectory.
You may find it more convenient to use the ‘BUILD/compile-pentium-debug’ script
than the preceding set of shell commands. To compile on a different architecture,
modify the script by removing flags that are Pentium-specific.

When the build is done, run make install. Be careful with this on a production
machine; the command may overwrite your live release installation. If you have another
installation of MySQL, we recommend that you run ./configure with different values
for the —-prefix, --with-tcp-port, and --unix-socket-path options than those
used for your production server.

Play hard with your new installation and try to make the new features crash. Start by
running make test. See Section 23.1.2 [MySQL test suite], page 1050.

If you have gotten to the make stage and the distribution does not compile, please report
it in our bugs database at http://bugs.mysql.com/. If you have installed the latest
versions of the required GNU tools, and they crash trying to process our configuration
files, please report that also. However, if you execute aclocal and get a command not
found error or a similar problem, do not report it. Instead, make sure that all the
necessary tools are installed and that your PATH variable is set correctly so that your
shell can find them.

After the initial bk clone operation to obtain the source tree, you should run bk pull
periodically to get updates.

You can examine the change history for the tree with all the diffs by using bk revtool.
If you see some funny diffs or code that you have a question about, do not hesitate
to send email to the MySQL internals mailing list. See Section 1.7.1.1 [Mailing-list],
page 32. Also, if you think you have a better idea on how to do something, send an
email message to the same address with a patch. bk diffs will produce a patch for
you after you have made changes to the source. If you do not have the time to code
your idea, just send a description.

BitKeeper has a nice help utility that you can access via bk helptool.

Please note that any commits (made via bk ci or bk citool) will trigger the posting
of a message with the changeset to our internals mailing list, as well as the usual
openlogging.org submission with just the changeset comments. Generally, you wouldn’t
need to use commit (since the public tree will not allow bk push), but rather use the
bk diffs method described previously.

You can also browse changesets, comments, and source code online. For example, to browse
this information for MySQL 4.1, go to http://mysql.bkbits.net:8080/mysql-4.1.

The manual is in a separate tree that can be cloned with:

shell> bk clone bk://mysql.bkbits.net/mysqldoc mysqldoc

There are also public BitKeeper trees for MySQL Control Center and Connector/ODBC.
They can be cloned respectively as follows.

To clone MySQL Control center, use this command:

shell> bk clone http://mysql.bkbits.net/mysqlcc mysqlcc

To clone Connector/ODBC, use this command:

Chapter 2: Installing MySQL 109

shell> bk clone http://mysql.bkbits.net/myodbc3 myodbc3

2.3.4 Dealing with Problems Compiling MySQL

All MySQL programs compile cleanly for us with no warnings on Solaris or Linux using
gcc. On other systems, warnings may occur due to differences in system include files.
See Section 2.3.5 [MIT-pthreads|, page 112 for warnings that may occur when using MIT-
pthreads. For other problems, check the following list.

The solution to many problems involves reconfiguring. If you do need to reconfigure, take
note of the following:

o If configure is run after it already has been run, it may use information that was
gathered during its previous invocation. This information is stored in ‘config.cache’.
When configure starts up, it looks for that file and reads its contents if it exists, on
the assumption that the information is still correct. That assumption is invalid when
you reconfigure.

e Each time you run configure, you must run make again to recompile. However, you
may want to remove old object files from previous builds first because they were com-
piled using different configuration options.

To prevent old configuration information or object files from being used, run these com-
mands before re-running configure:

shell> rm config.cache
shell> make clean

Alternatively, you can run make distclean.

The following list describes some of the problems when compiling MySQL that have been
found to occur most often:

e If you get errors such as the ones shown here when compiling ‘sql_yacc.cc’, you
probably have run out of memory or swap space:

Internal compiler error: program cclplus got fatal signal 11
Out of virtual memory
Virtual memory exhausted

The problem is that gcc requires a huge amount of memory to compile ‘sql_yacc.cc’
with inline functions. Try running configure with the --with-low-memory option:

shell> ./configure --with-low-memory

This option causes ~fno-inline to be added to the compile line if you are using gcc
and -00 if you are using something else. You should try the ——with-low-memory option
even if you have so much memory and swap space that you think you can’t possibly
have run out. This problem has been observed to occur even on systems with generous
hardware configurations and the --with-low-memory option usually fixes it.

e By default, configure picks c++ as the compiler name and GNU c++ links with -1g++.
If you are using gcc, that behavior can cause problems during configuration such as
this:

configure: error: installation or configuration problem:
C++ compiler cannot create executables.

110 MySQL Technical Reference for Version 5.0.0-alpha

You might also observe problems during compilation related to g++, libg++, or
libstdc++.

One cause of these problems is that you may not have g++, or you may have g++ but
not libg++, or libstdc++. Take a look at the ‘config.log’ file. It should contain the
exact reason why your C++ compiler didn’t work. To work around these problems, you
can use gcc as your C++ compiler. Try setting the environment variable CXX to "gcc
-03". For example:

shell> CXX="gcc -03" ./configure

This works because gcc compiles C++ sources as well as g++ does, but does not link in
libg++ or libstdc++ by default.

Another way to fix these problems is to install g++, libg++, and libstdc++. We
would, however, like to recommend that you not use Libg++ or 1ibstdc++ with MySQL
because this will only increase the binary size of mysqld without giving you any benefits.
Some versions of these libraries have also caused strange problems for MySQL users in
the past.

Using gcc as the C++ compiler is also required if you want to compile MySQL with
RAID functionality (see Section 14.2.5 [CREATE TABLE], page 697 for more info on
RAID table type) and you are using GNU gcc version 3 and above. If you get errors
like those following during the linking stage when you configure MySQL to compile
with the option ——with-raid, try to use gcc as your C++ compiler by defining the CXX
environment variable:

gcc -03 -DDBUG_OFF -rdynamic -o isamchk isamchk.o sort.o libnisam.a
../mysys/libmysys.a ../dbug/libdbug.a ../strings/libmystrings.a
-lpthread -1z -lcrypt -1lnsl -1lm -lpthread
../mysys/libmysys.a(raid.o) (.text+0x79): In function
‘my_raid_create’:: undefined reference to ‘operator new(unsigned)’
../mysys/libmysys.a(raid.o) (.text+0xdd): In function
‘my_raid_create’:: undefined reference to ‘operator delete(voidx*)’
../mysys/libmysys.a(raid.o) (.text+0x129): In function

‘my_raid_open’:: undefined reference to ‘operator new(unsigned)’
../mysys/libmysys.a(raid.o) (.text+0x189): In function
‘my_raid_open’:: undefined reference to ‘operator delete(voidx)’

../mysys/libmysys.a(raid.o) (.text+0x64b): In function
‘my_raid_close’:: undefined reference to ‘operator delete(voidx)’
collect2: 1d returned 1 exit status

e If your compile fails with errors such as any of the following, you must upgrade your
version of make to GNU make:

making all in mit-pthreads
make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

make: file ‘Makefile’ line 18: Must be a separator (:

pthread.h: No such file or directory

Chapter 2: Installing MySQL 111

Solaris and FreeBSD are known to have troublesome make programs.
GNU make Version 3.75 is known to work.

e If you want to define flags to be used by your C or C++ compilers, do so by adding
the flags to the CFLAGS and CXXFLAGS environment variables. You can also specify the
compiler names this way using CC and CXX. For example:

shell> CC=gcc

shell> CFLAGS=-03

shell> CXX=gcc

shell> CXXFLAGS=-03

shell> export CC CFLAGS CXX CXXFLAGS

See Section 2.1.2.5 [MySQL binaries], page 67, for a list of flag definitions that have
been found to be useful on various systems.

e If you get an error message like this, you need to upgrade your gcc compiler:

client/libmysql.c:273: parse error before ‘__attribute__’

gcc 2.8.1 is known to work, but we recommend using gcc 2.95.2 or eges 1.0.3a instead.

e If you get errors such as those shown here when compiling mysqld, configure didn’t
correctly detect the type of the last argument to accept(), getsockname(), or
getpeername ():

cxx: Error: mysqld.cc, line 645: In this statement, the referenced
type of the pointer value ’’length’’ is ’’unsigned long’’,
which is not compatible with ’’int’’.

new_sock = accept(sock, (struct sockaddr *)&cAddr, &length);

To fix this, edit the ‘config.h’ file (which is generated by configure). Look for these
lines:

/* Define as the base type of the last arg to accept */
#define SOCKET_SIZE_TYPE XXX

Change XXX to size_t or int, depending on your operating system. (Note that you
will have to do this each time you run configure because configure regenerates
‘config.h’.)

e The ‘sql_yacc.cc’ file is generated from ‘sql_yacc.yy’. Normally the build process
doesn’t need to create ‘sql_yacc.cc’, because MySQL comes with an already generated
copy. However, if you do need to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install bison
(the GNU version of yacc) and use that instead.

e On Debian Linux 3.0, you need to install gawk instead of the default mawk if you want
to compile MySQL 4.1 or higher with Berkeley DB support.

e If you need to debug mysqld or a MySQL client, run configure with the —-with-
debug option, then recompile and link your clients with the new client library. See
Section D.2 [Debugging client], page 1283.

e If you get a compilation error on Linux (for example, SuSE Linux 8.1 or Red Hat Linux
7.3) similar to the following one:

112 MySQL Technical Reference for Version 5.0.0-alpha

libmysql.c:1329: warning: passing arg 5 of ‘gethostbyname_r’ from
incompatible pointer type
libmysql.c:1329: too few arguments to function ‘gethostbyname_r’
libmysql.c:1329: warning: assignment makes pointer from integer
without a cast
make [2] : #**x [libmysql.lo] Error 1
By default, the configure script attempts to determine the correct number of argu-
ments by using g++ the GNU C++ compiler. This test yields wrong results if g++ is not
installed. There are two ways to work around this problem:

e Make sure that the GNU C++ g++ is installed. On some Linux distributions, the
required package is called gpp; on others, it is named gcc—c++.
e Use gcc as your C++ compiler by setting the CXX environment variable to gcc:

export CXX="gcc"

Please note that you need to run configure again afterward.

2.3.5 MIT-pthreads Notes

This section describes some of the issues involved in using MIT-pthreads.

On Linux, you should not use MIT-pthreads. Use the installed LinuxThreads implementa-
tion instead. See Section 2.6.1 [Linux], page 148.

If your system does not provide native thread support, you will need to build MySQL using
the MIT-pthreads package. This includes older FreeBSD systems, SunOS 4.x, Solaris 2.4
and earlier, and some others. See Section 2.1.1 [Which OS], page 60.

Beginning with MySQL 4.0.2, MIT-pthreads is no longer part of the source dis-
tribution. If you require this package, you need to download it separately from
http://www.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

After downloading, extract this source archive into the top level of the MySQL source
directory. It will create a new subdirectory named mit-pthreads.

e On most systems, you can force MIT-pthreads to be used by running configure with
the ——with-mit-threads option:

shell> ./configure --with-mit-threads

Building in a non-source directory is not supported when using MIT-pthreads because
we want to minimize our changes to this code.

e The checks that determine whether to use MIT-pthreads occur only during the part
of the configuration process that deals with the server code. If you have configured
the distribution using --without-server to build only the client code, clients will
not know whether MIT-pthreads is being used and will use Unix socket connections by
default. Because Unix socket files do not work under MIT-pthreads on some platforms,
this means you will need to use -h or --host when you run client programs.

e When MySQL is compiled using MIT-pthreads, system locking is disabled by default
for performance reasons. You can tell the server to use system locking with the --
external-locking option. This is needed only if you want to be able to run two
MySQL servers against the same data files, which is not recommended.

Chapter 2: Installing MySQL 113

e Sometimes the pthread bind() command fails to bind to a socket without any error
message (at least on Solaris). The result is that all connections to the server fail. For
example:

shell> mysqladmin version
mysqladmin: connect to server at ’’ failed;
error: ’Can’t connect to mysql server on localhost (146)’

The solution to this is to kill the mysqld server and restart it. This has only happened
to us when we have forced down the server and done a restart immediately.

e With MIT-pthreads, the sleep() system call isn’t interruptible with SIGINT (break).
This is only noticeable when you run mysqladmin --sleep. You must wait for the
sleep() call to terminate before the interrupt is served and the process stops.

e When linking, you may receive warning messages like these (at least on Solaris); they
can be ignored:
1d: warning: symbol ‘_iob’ has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;
file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken
1d: warning: symbol ‘__iob’ has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;
file /usr/lib/libc.so value=0x140);
/my/local/pthreads/1ib/libpthread.a(findfp.o) definition taken

e Some other warnings also can be ignored:

implicit declaration of function ‘int strtoll(...)’
implicit declaration of function ‘int strtoul(...)’

e We haven’t gotten readline to work with MIT-pthreads. (This isn’t needed, but may
be interesting for someone.)

2.3.6 Installing MySQL from Source on Windows

These instructions describe how to build MySQL binaries from source for versions 4.1 and
above on Windows. Instructions are provided for building binaries from a standard source
distribution or from the BitKeeper tree that contains the latest development source.

Note: The instructions in this document are strictly for users who want to test MySQL on
Windows from the latest source distribution or from the BitKeeper tree. For production use,
MySQL AB does not advise using a MySQL server built by yourself from source. Normally,
it is best to use precompiled binary distributions of MySQL that are built specifically
for optimal performance on Windows by MySQL AB. Instructions for installing a binary
distributions are available at Section 2.2.1 [Windows installation], page 78.

To build MySQL on Windows from source, you need the following compiler and resources
available on your Windows system:

e VC++ 6.0 compiler (updated with 4 or 5 SP and pre-processor package). The pre-
processor package is necessary for the macro assembler. More details can be found at
http://msdn.microsoft.com/vstudio/downloads/updates/sp/vs6/sp5/faq.aspx.

e Approximately 45MB disk space.

114 MySQL Technical Reference for Version 5.0.0-alpha

e 64MB RAM.
You’ll also need a MySQL source distribution for Windows. There are two ways you can
get a source distribution for MySQL version 4.1 and above:

1. Obtain a source distribution packaged by MySQL AB for the particular
version of MySQL in which you are interested. Prepackaged source distribu-
tions are available for released versions of MySQL and can be obtained from
http://dev.mysql.com/downloads/.

2. You can package a source distribution yourself from the latest BitKeeper developer
source tree. If you plan to do this, you must create the package on a Unix system
and then transfer it to your Windows system. (The reason for this is that some of the
configuration and build steps require tools that work only on Unix.) The BitKeeper
approach thus requires:

e A system running Unix, or a Unix-like system such as Linux.
e BitKeeper 3.0 installed on that system. You can obtain BitKeeper from
http://wuw.bitkeeper.com/.

If you are using a Windows source distribution, you can go directly to Section 2.3.6.1 [Win-
dows VC++ Build], page 114. To build from the BitKeeper tree, proceed to Section 2.3.6.2
[Windows BitKeeper Build], page 116.

If you find something not working as expected, or you have suggestions about ways to
improve the current build process on Windows, please send a message to the win32 mailing
list. See Section 1.7.1.1 [Mailing-list], page 32.

2.3.6.1 Building MySQL Using VC++

Note: VC++ workspace files for MySQL 4.1 and above are compatible with Microsoft Visual
Studio 6.0 and above (7.0/.NET) editions and tested by MySQL AB staff before each release.

Follow this procedure to build MySQL:
1. Create a work directory (for example, ‘C:\workdir’).

2. Unpack the source distribution in the aforementioned directory using WinZip or other
Windows tool that can read ‘.zip’ files.

Start the VC++ 6.0 compiler.

In the File menu, select Open Workspace.

Open the ‘mysql.dsw’ workspace you find in the work directory.
From the Build menu, select the Set Active Configuration menu.
Click over the screen selecting mysqld - Win32 Debug and click OK.

Press F7 to begin the build of the debug server, libraries, and some client applications.

© 0N e W

Compile the release versions that you want in the same way.

10. Debug versions of the programs and libraries are placed in the ‘client_debug’ and
‘1ib_debug’ directories. Release versions of the programs and libraries are placed in
the ‘client_release’ and ‘lib_release’ directories. Note that if you want to build
both debug and release versions, you can select the Build A1l option from the Build
mentu.

Chapter 2: Installing MySQL 115

11. Test the server. The server built using the preceding instructions will expect that
the MySQL base directory and data directory are ‘C:\mysql’ and ‘C:\mysql\data’ by
default. If you want to test your server using the source tree root directory and its
data directory as the base directory and data directory, you will need to tell the server
their pathnames. You can either do this on the command line with the --basedir
and --datadir options, or place appropriate options in an option file (the ‘my.ini’
file in your Windows directory or ‘C:\my.cnf’). If you have an existing data directory
elsewhere that you want to use, you can specify its pathname instead.

12. Start your server from the ‘client_release’ or ‘client_debug’ directory, depend-
ing on which server you want to use. The general server startup instructions are at
Section 2.2.1 [Windows installation], page 78. You’ll need to adapt the instructions
appropriately if you want to use a different base directory or data directory.

13. When the server is running in standalone fashion or as a service based on your configu-
ration, try to connect to it from the mysql interactive command-line utility that exists
in your ‘client_release’ or ‘client_debug’ directory.

When you are satisfied that the programs you have built are working correctly, stop the
server. Then install MySQL as follows:

1. Create the directories where you want to install MySQL. For example, to install into
‘C:\mysql’, use these commands:
C:\> mkdir C:\mysql
C:\> mkdir C:\mysql\bin
C:\> mkdir C:\mysql\data
C:\> mkdir C:\mysql\share
C:\> mkdir C:\mysql\scripts
If you want to compile other clients and link them to MySQL, you should also create
several additional directories:
C:\> mkdir C:\mysql\include
C:\> mkdir C:\mysql\lib
C:\> mkdir C:\mysql\lib\debug
C:\> mkdir C:\mysql\lib\opt
If you want to benchmark MySQL, create this directory:
C:\> mkdir C:\mysql\sql-bench
Benchmarking requires Perl support.
2. From the ‘workdir’ directory, copy into the C:\mysql directory the following directo-
ries:
C:\> cd \workdir
C:\workdir> copy client_release*.exe C:\mysql\bin
C:\workdir> copy client_debug\mysqld.exe C:\mysql\bin\mysqld-debug.exe]]
C:\workdir> xcopy scripts*.* C:\mysql\scripts /E
C:\workdir> xcopy share*.* C:\mysql\share /E
If you want to compile other clients and link them to MySQL, you should also copy
several libraries and header files:
C:\workdir> copy 1lib_debug\mysqlclient.lib C:\mysql\lib\debug
C:\workdir> copy lib_debug\libmysql.* C:\mysql\lib\debug

116

MySQL Technical Reference for Version 5.0.0-alpha

C:\workdir> copy lib_debug\zlib.* C:\mysql\lib\debug
C:\workdir> copy lib_release\mysqglclient.lib C:\mysql\lib\opt
C:\workdir> copy lib_release\libmysql.* C:\mysql\lib\opt
C:\workdir> copy lib_release\zlib.* C:\mysql\lib\opt
C:\workdir> copy include*.h C:\mysql\include
C:\workdir> copy libmysql\libmysql.def C:\mysql\include
If you want to benchmark MySQL, you should also do this:
C:\workdir> xcopy sql-bench*.* C:\mysql\bench /E

Set up and start the server in the same way as for the binary Windows distribution. See
Section 2.2.1 [Windows installation|, page 78.

2.3.6.2 Creating a Windows Source Package from the Latest

Development Source

To create a Windows source package from the current BitKeeper source tree, use the follow-
ing instructions. Please note that this procedure must be performed on a system running a
Unix or Unix-like operating system. For example, the procedure is known to work well on
Linux.

1.

Clone the BitKeeper source tree for MySQL (version 4.1 or above, as desired). For
more information on how to clone the source tree, see the instructions at Section 2.3.3
[Installing source tree], page 106.

Configure and build the distribution so that you have a server binary to work with.
One way to do this is to run the following command in the top-level directory of your
source tree:

shell> ./BUILD/compile-pentium-max

After making sure that the build process completed successfully, run the following
utility script from top-level directory of your source tree:

shell> ./scripts/make_win_src_distribution

This script creates a Windows source package to be used on your Windows system. You
can supply different options to the script based on your needs. It accepts the following
options:

--help Display a help message.

--debug Print information about script operations, do not create package.
-—tmp Specify the temporary location.

—--suffix Suffix name for the package.

--dirname
Directory name to copy files (intermediate).

--silent Do not print verbose list of files processed.
--tar Create ‘tar.gz’ package instead of ‘.zip’ package.

By default, make_win_src_distribution creates a Zip-format archive with the name
‘mysql-VERSION-win-src.zip’, where VERSION represents the version of your
MySQL source tree.

Chapter 2: Installing MySQL 117

4. Copy or upload to your Windows machine the Windows source package that you have
just created. To compile it, use the instructions in Section 2.3.6.1 [Windows VC++
Build], page 114.

2.3.7 Compiling MySQL Clients on Windows

In your source files, you should include ‘my_global.h’ before ‘mysql.h’:

#include <my_global.h>
#include <mysql.h>

‘my_global.h’ includes any other files needed for Windows compatibility (such as
‘windows.h’) if you compile your program on Windows.

You can either link your code with the dynamic ‘libmysql.lib’ library, which is just a
wrapper to load in ‘1ibmysql.d11’ on demand, or link with the static ‘mysqlclient.lib’
library.

The MySQL client libraries are compiled as threaded libraries, so you should also compile
your code to be multi-threaded.

2.4 Post-Installation Setup and Testing

After installing MySQL, there are some issues you should address. For example, on Unix,
you should initialize the data directory and create the MySQL grant tables. On all plat-
forms, an important security concern is that the initial accounts in the grant tables have
no passwords. You should assign passwords to prevent unauthorized access to the MySQL
server. For MySQL 4.1.3 and up, you can create time zone tables to enable recognition of
named time zones. (Currently, these tables can be populated only on Unix. This problem
will be addressed soon for Windows.)

The following sections include post-installation procedures that are specific to Windows
systems and to Unix systems. Another section, Section 2.4.2.3 [Starting server], page 127,
applies to all platforms; it describes what to do if you have trouble getting the server to
start. Section 2.4.3 [Default privileges|, page 129 also applies to all platforms. You should
follow its instructions to make sure that you have properly protected your MySQL accounts
by assigning passwords to them.

When you are ready to create additional user accounts, you can find information on the
MySQL access control system and account management in Section 5.5 [Privilege system)],
page 292 and Section 5.6 [User Account Management], page 316.

2.4.1 Windows Post-Installation Procedures

On Windows, the data directory and the grant tables do not have to be created. MySQL
Windows distributions include the grant tables already set up with a set of preinitialized
accounts in the mysql database under the data directory. However, you should assign pass-
words to the accounts. The procedure for this is given in Section 2.4.3 [Default privileges],
page 129.

Before setting up passwords, you might want to try running some client programs to make
sure that you can connect to the server and that it is operating properly. Make sure the

118 MySQL Technical Reference for Version 5.0.0-alpha

server is running (see Section 2.2.1.5 [Windows server first start], page 82), then issue the
following commands to verify that you can retrieve information from the server. The output
should be similar to what is shown here:

C:\> C:\mysql\bin\mysqlshow

fomm +
| Databases |
T +
| mysql |
| test |
fomm +

C:\> C:\mysql\bin\mysqlshow mysql
Database: mysql

| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |

C:\> C:\mysql\bin\mysql -e "SELECT Host,Db,User FROM db" mysql

PR R PR +
| host | db | user |
N - I — I — +
A | testy, | |
fo———— fo— fom——— +

If you are running a version of Windows that supports services and you want the MySQL
server to run automatically when Windows starts, see Section 2.2.1.7 [NT start], page 83.

2.4.2 Unix Post-Installation Procedures

After installing MySQL on Unix, you need to initialize the grant tables, start the server,
and make sure that the server works okay. You may also wish to arrange for the server to
be started and stopped automatically when your system starts and stops. You should also
assign passwords to the accounts in the grant tables.

On Unix, the grant tables are set up by the mysql_install_db program. For some instal-
lation methods, this program is run for you automatically:
e If you install MySQL on Linux using RPM distributions, the server RPM runs mysql_
install_db.

e If you install MySQL on Mac OS X using a PKG distribution, the installer runs mysql_
install_db.

Chapter 2: Installing MySQL 119

Otherwise, you’ll need to run mysql_install_db yourself.

The following procedure describes how to initialize the grant tables (if that has not already
been done) and then start the server. It also suggests some commands that you can use to
test whether the server is accessible and working properly. For information about starting
and stopping the server automatically, see Section 2.4.2.2 [Automatic start], page 124.

After you complete the procedure and have the server running, you should assign pass-
words to the accounts created by mysql_install_db. Instructions for doing so are given
in Section 2.4.3 [Default privileges], page 129.

In the examples shown here, the server runs under the user ID of the mysql login account.
This assumes that such an account exists. Either create the account if it does not exist, or
substitute the name of a different existing login account that you plan to use for running
the server.

1. Change location into the top-level directory of your MySQL installation, represented
here by BASEDIR:

shell> cd BASEDIR

BASEDIR is likely to be something like ‘/usr/local/mysql’ or ‘/usr/local’. The
following steps assume that you are located in this directory.

2. If necessary, run the mysql_install_db program to set up the initial MySQL grant
tables containing the privileges that determine how users are allowed to connect to
the server. You’ll need to do this if you used a distribution type that doesn’t run the
program for you.

Typically, mysql_install_db needs to be run only the first time you install MySQL,
so you can skip this step if you are upgrading an existing installation, However, mysql_
install_db does not overwrite any existing privilege tables, so it should be safe to run
in any circumstances.

To initialize the grant tables, use one of the following commands, depending on whether
mysql_install_db is located in the bin or scripts directory:

shell> bin/mysql_install_db --user=mysql
shell> scripts/mysql_install_db --user=mysql

The mysql_install_db script creates the data directory, the mysql database that
holds all database privileges, and the test database that you can use to test MySQL.
The script also creates privilege table entries for root accounts and anonymous-user
accounts. The accounts have no passwords initially. A description of their initial
privileges is given in Section 2.4.3 [Default privileges], page 129. Briefly, these privi-
leges allow the MySQL root user to do anything, and allow anybody to create or use
databases with a name of test or starting with test_.

It is important to make sure that the database directories and files are owned by the
mysql login account so that the server has read and write access to them when you
run it later. To ensure this, the ——user option should be used as shown if you run
mysql_install_db as root. Otherwise, you should execute the script while logged in
as mysql, in which case you can omit the ——user option from the command.

mysql_install_db creates several tables in the mysql database: user, db, host,
tables_priv, columns_priv, func, and possibly others depending on your version

of MySQL.

120

MySQL Technical Reference for Version 5.0.0-alpha

If you don’t want to have the test database, you can remove it with mysqladmin -u
root drop test after starting the server.

If you have problems with mysql_install_db, see Section 2.4.2.1 [mysql_install_db],
page 123.

There are some alternatives to running the mysql_install_db script as it is provided
in the MySQL distribution:

e If you want the initial privileges to be different from the standard defaults, you

can modify mysql_install_db before you run it. However, a preferable technique
is to use GRANT and REVOKE to change the privileges after the grant tables have
been set up. In other words, you can run mysql_install_db, and then use mysql
-u root mysql to connect to the server as the MySQL root user so that you can
issue the GRANT and REVOKE statements.

If you want to install MySQL on a lot of machines with the same privileges, you
can put the GRANT and REVOKE statements in a file and execute the file as a script
using mysql after running mysql_install_db. For example:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

By doing this, you can avoid having to issue the statements manually on each
machine.

It is possible to re-create the grant tables completely after they have already been
created. You might want to do this if you're just learning how to use GRANT and
REVOKE and have made so many modifications after running mysql_install_db
that you want to wipe out the tables and start over.

To re-create the grant tables, remove all the ‘.frm’, ‘.MYI’, and ‘.MYD’ files in
the directory containing the mysql database. (This is the directory named ‘mysql’
under the data directory, which is listed as the datadir value when you run mysqld
--help.) Then run the mysql_install_db script again.

Note: For MySQL versions older than 3.22.10, you should not delete the ‘.frm’
files. If you accidentally do this, you should copy them back into the ‘mysql’
directory from your MySQL distribution before running mysql_install_db.

e You can start mysqld manually using the --skip-grant-tables option and add

the privilege information yourself using mysql:
shell> bin/mysqld_safe --user=mysql --skip-grant-tables &
shell> bin/mysql mysql

From mysql, manually execute the SQL commands contained in mysql_install_

db. Make sure that you run mysqladmin flush-privileges or mysqladmin
reload afterward to tell the server to reload the grant tables.

Note that by not using mysql_install_db, you not only have to populate the
grant tables manually, you also have to create them first.

3. Start the MySQL server:

shell> bin/mysqld_safe --user=mysql &

For versions of MySQL older than 4.0, substitute bin/safe_mysqld for bin/mysqld_
safe in this command.

Chapter 2: Installing MySQL 121

It is important that the MySQL server be run using an unprivileged (non-root) login
account. To ensure this, the ——user option should be used as shown if you run mysql_
safe as root. Otherwise, you should execute the script while logged in as mysql, in
which case you can omit the ——user option from the command.

Further instructions for running MySQL as an unprivileged user are given in Sec-
tion A.3.2 [Changing MySQL user|, page 1077.

If you neglected to create the grant tables before proceeding to this step, the following
message will appear in the error log file when you start the server:

mysqld: Can’t find file: ’host.frm’

If you have other problems starting the server, see Section 2.4.2.3 [Starting server],
page 127.

4. Use mysqladmin to verify that the server is running. The following commands provide
simple tests to check whether the server is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

The output from mysqladmin version varies slightly depending on your platform and
version of MySQL, but should be similar to that shown here:

shell> bin/mysqladmin version

mysqladmin Ver 8.40 Distrib 4.0.18, for linux on 1586

Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This software comes with ABSOLUTELY NO WARRANTY. This is free software,li
and you are welcome to modify and redistribute it under the GPL licensel]

Server version 4.0.18-1og

Protocol version 10

Connection Localhost via Unix socket
TCP port 3306

UNIX socket /tmp/mysql.sock

Uptime: 16 sec

Threads: 1 Questions: 9 Slow queries: O
Opens: 7 Flush tables: 2 Open tables: O
Queries per second avg: 0.000

Memory in use: 132K Max memory used: 16773K

To see what else you can do with mysqladmin, invoke it with the —-help option.
5. Verify that you can shut down the server:
shell> bin/mysqladmin -u root shutdown

6. Verify that you can restart the server. Do this by using mysqld_safe or by invoking
mysqld directly. For example:

shell> bin/mysqld_safe --user=mysql --log &
If mysqld_safe fails, see Section 2.4.2.3 [Starting server], page 127.

7. Run some simple tests to verify that you can retrieve information from the server. The
output should be similar to what is shown here:

122

8.

MySQL Technical Reference for Version 5.0.0-alpha

shell> bin/mysqlshow

fomm +
| Databases |
fom +
| mysql |
| test |
fom +

shell> bin/mysqlshow mysql
Database: mysql

| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |

shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql

FR— Fommm FRE— +
| host | db | user |
fomm— fommm TR +
I % | test | I
| % | test_% | |
TR o FR— +

There is a benchmark suite in the ‘sql-bench’ directory (under the MySQL installation
directory) that you can use to compare how MySQL performs on different platforms.
The benchmark suite is written in Perl. It uses the Perl DBI module to provide a
database-independent interface to the various databases, and some other additional
Perl modules are required to run the benchmark suite. You must have the following
modules installed:

DBI

DBD: :mysql

Data: :Dumper

Data: :ShowTable
These modules can be obtained from CPAN (http://www.cpan.org/). See
Section 2.7.1 [Perl installation], page 178.
The ‘sql-bench/Results’ directory contains the results from many runs against dif-
ferent databases and platforms. To run all tests, execute these commands:

shell> cd sql-bench

shell> perl run-all-tests
If you don’t have the ‘sql-bench’ directory, you probably installed MySQL using RPM
files other than the source RPM. (The source RPM includes the ‘sql-bench’ benchmark

Chapter 2: Installing MySQL 123

directory.) In this case, you must first install the benchmark suite before you can
use it. Beginning with MySQL 3.22, there are separate benchmark RPM files named
‘mysql-bench-VERSION-i386.rpm’ that contain benchmark code and data.

If you have a source distribution, there are also tests in its ‘tests’ subdirectory that
you can run. For example, to run ‘auto_increment.tst’, execute this command from
the top-level directory of your source distribution:

shell> mysql -vvf test < ./tests/auto_increment.tst

The expected result of the test can be found in the ‘./tests/auto_increment.res’
file.

9. At this point, you should have the server running. However, none of the initial MySQL
accounts have a password, so you should assign passwords using the instructions in
Section 2.4.3 [Default privileges|, page 129.

As of MySQL 4.1.3, the installation procedure creates time zone tables in the mysql
database. However, you must populate the tables manually. Instructions to do this are
given in Section 5.8.8 [Time zone support], page 359.

2.4.2.1 Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables.
It will not overwrite existing MySQL privilege tables, and it will not affect any other data.

If you want to re-create your privilege tables, first stop the mysqld server if it’s running.
Then rename the ‘mysql’ directory under the data directory to save it, and then run mysql_
install_db. For example:
shell> mv mysql-data-directory/mysql mysql-data-directory/mysql-old
shell> mysql_install_db --user=mysql
This section lists problems you might encounter when you run mysql_install_db:

mysql_install_db doesn’t install the grant tables
You may find that mysql_install_db fails to install the grant tables and ter-
minates after displaying the following messages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should
be located in the directory ‘XXXXXX’ named by the error message, and should
indicate why mysqld didn’t start. If you don’t understand what happened,
include the log when you post a bug report. See Section 1.7.1.3 [Bug reports],
page 35.

There is already a mysqld process running
This indicates that the server is already running, in which case the grant ta-
bles probably have already been created. If so, you don’t have to run mysql_
install_db at all because it need be run only once (when you install MySQL
the first time).

Installing a second mysqld server doesn’t work when one server is running
This can happen when you already have an existing MySQL installation, but
want to put a new installation in a different location. For example, you might

124 MySQL Technical Reference for Version 5.0.0-alpha

have a production installation already, but you want to create a second instal-
lation for testing purposes. Generally the problem that occurs when you try
to run a second server is that it tries to use a network interface that is already
in use by the first server. In this case, you will see one of the following error
messages:

Can’t start server: Bind on TCP/IP port:
Address already in use
Can’t start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.10 [Multiple
servers|, page 367.

You don’t have write access to ‘/tmp’
If you don’t have write access to create temporary files or a Unix socket file in
the default location (the ‘/tmp’ directory), an error will occur when you run
mysql_install_db or the mysqld server.

You can specify different temporary directory and Unix socket file locations by
executing these commands prior to starting mysql_install_db or mysqld:
shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT
‘some_tmp_dir’ should be the full pathname to some directory for which you
have write permission.
After this, you should be able to run mysql_install_db and start the server
with these commands:
shell> bin/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &
If mysql_install_db is located in the ‘scripts’ directory, modify the first
command to use scripts/mysql_install_db.
See Section A.4.5 [Problems with ‘mysql.sock’], page 1084. See Appendix E
[Environment variables|, page 1288.

2.4.2.2 Starting and Stopping MySQL Automatically

Generally, you start the mysqld server in one of these ways:
e By invoking mysqld directly. This works on any platform.

e By running the MySQL server as a Windows service. This can be done on versions of
Windows that support services (such as NT, 2000, and XP). The service can be set to
start the server automatically when Windows starts, or as a manual service that you
start on request. For instructions, see Section 2.2.1.7 [NT start], page 83.

e By invoking mysqld_safe, which tries to determine the proper options for mysqld and
then runs it with those options. This script is used on systems based on BSD Unix.
See Section 5.1.3 [mysqld_safe]|, page 232.

e By invoking mysql.server. This script is used primarily at system startup and shut-
down on systems that use System V-style run directories, where it usually is installed

Chapter 2: Installing MySQL 125

under the name mysql. The mysql.server script starts the server by invoking mysqld_
safe. See Section 5.1.4 [mysql.server], page 235.

e On Mac OS X, you can install a separate MySQL Startup Item package to enable the
automatic startup of MySQL on system startup. The Startup Item starts the server by
invoking mysql.server. See Section 2.2.3 [Mac OS X installation], page 92 for details.

The mysql.server and mysqld_safe scripts and the Mac OS X Startup Item can be used
to start the server manually, or automatically at system startup time. mysql.server and
the Startup Item also can be used to stop the server.

To start or stop the server manually using the mysql.server script, invoke it with start
or stop arguments:

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation di-
rectory, and then invokes mysqld_safe. If you want the server to run as some specific user,
add an appropriate user option to the [mysqld] group of the ‘/etc/my.cnf’ option file, as
shown later in this section. (It is possible that you’ll need to edit mysql.server if you've
installed a binary distribution of MySQL in a non-standard location. Modify it to cd into
the proper directory before it runs mysqld_safe. If you do this, your modified version of
mysql.server may be overwritten if you upgrade MySQL in the future, so you should make
a copy of your edited version that you can reinstall.)

mysql.server stop brings down the server by sending a signal to it. You can also stop the
server manually by executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you need to add start and stop
commands to the appropriate places in your ‘/etc/rc*’ files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server
script will already have been installed in the ‘/etc/init.d’ directory with the name ‘mysql’.
You need not install it manually. See Section 2.2.2 [Linux-RPM], page 90 for more infor-
mation on the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name
such as mysqld.

If you install MySQL from a source distribution or using a binary distribution format that
does not install mysql.server automatically, you can install it manually. The script can
be found in the ‘support-files’ directory under the MySQL installation directory or in a
MySQL source tree.

To install mysql.server manually, copy it to the ‘/etc/init.d’ directory with the name
mysql, and then make it executable. Do this by changing location into the appropriate
directory where mysql.server is located and executing these commands:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Older Red Hat systems use the ‘/etc/rc.d/init.d’ directory rather than ‘/etc/init.d’.
Adjust the preceding commands accordingly. Alternatively, first create ‘/etc/init.d’ as a
symbolic link that points to ‘/etc/rc.d/init.d”

shell> cd /etc

126 MySQL Technical Reference for Version 5.0.0-alpha

shell> 1n -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup
depend on your operating system. On Linux, you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable
the mysql script:

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in ‘/usr/local/etc/rc.d/’. The rc(8)
manual page states that scripts in this directory are executed only if their basename matches
the *.sh shell filename pattern. Any other files or directories present within the directory
are silently ignored. In other words, on FreeBSD, you should install the ‘mysql.server’
script as ‘/usr/local/etc/rc.d/mysql.server.sh’ to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use ‘/etc/rc.local’
or ‘/etc/init.d/boot.local’ to start additional services on startup. To start up MySQL
using this method, you could append a command like the one following to the appropriate
startup file:

/bin/sh -c ’cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &’

For other systems, consult your operating system documentation to see how to install
startup scripts.

You can add options for mysql.server in a global ‘/etc/my.cnf’ file. A typical
‘/etc/my.cnf’ file might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306

user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script understands the following options: basedir, datadir, and pid-
file. If specified, they must be placed in an option file, not on the command line.
mysql.server understands only start and stop as command-line arguments.

The following table shows which option groups the server and each startup script read from
option files:

Script Option Groups

mysqld [mysqld], [server], [mysqld-major-version]
mysql.server [mysqld], [mysql.server]

mysqld_safe [mysqld], [server], [mysqld_safel

[mysqld-major-version] means that groups with names like [mysqld-4.0], [mysqld-
4.1], and [mysqld-5.0] will be read by servers having versions 4.0.x, 4.1.x, 5.0.x, and so
forth. This feature was added in MySQL 4.0.14. It can be used to specify options that will
be read only by servers within a given release series.

Chapter 2: Installing MySQL 127

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. However, you should update your op-
tion files to use the [mysql.server] and [mysqld_safe] groups instead when you begin
using MySQL 4.0 or later.

See Section 4.3.2 [Option files|, page 223.

2.4.2.3 Starting and Troubleshooting the MySQL Server

If you have problems starting the server, here are some things you can try:
e Specify any special options needed by the storage engines you are using.
e Make sure that the server knows where to find the data directory.

e Make sure the server can use the data directory. The ownership and permissions of the
data directory and its contents must be set such that the server can access and modify
them.

e Check the error log to see why the server doesn’t start.

e Verify that the network interfaces the server wants to use are available.

Some storage engines have options that control their behavior. You can create a ‘my.cnf’
file and set startup options for the engines you plan to use. If you are going to use stor-
age engines that support transactional tables (InnoDB, BDB), be sure that you have them
configured the way you want before starting the server:

e If you are using InnoDB tables, refer to the InnoDB-specific startup options. In MySQL
3.23, you must configure InnoDB explicitly or the server will fail to start. From MySQL
4.0 on, InnoDB uses default values for its configuration options if you specify none. See
Section 16.4 [InnoDB configuration|, page 788.

e If you are using BDB (Berkeley DB) tables, you should familiarize yourself with the
different BDB-specific startup options. See Section 15.4.3 [BDB start], page 782.

When the mysqld server starts, it changes location to the data directory. This is where it
expects to find databases and where it expects to write log files. On Unix, the server also
writes the pid (process ID) file in the data directory.

The data directory location is hardwired in when the server is compiled. This is where the
server looks for the data directory by default. If the data directory is located somewhere
else on your system, the server will not work properly. You can find out what the default
path settings are by invoking mysqld with the --verbose and --help options. (Prior to
MySQL 4.1, omit the -—-verbose option.)

If the defaults don’t match the MySQL installation layout on your system, you can override
them by specifying options on the command line to mysqld or mysqld_safe. You can also
list the options in an option file.

To specify the location of the data directory explicitly, use the --datadir option. However,
normally you can tell mysqld the location of the base directory under which MySQL is
installed and it will look for the data directory there. You can do this with the --basedir
option.

To check the effect of specifying path options, invoke mysqld with those options followed by
the --verbose and --help options. For example, if you change location into the directory

128 MySQL Technical Reference for Version 5.0.0-alpha

where mysqld is installed, and then run the following command, it will show the effect of
starting the server with a base directory of ‘/usr/local’:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but note that --verbose and
--help must be the last options. (Prior to MySQL 4.1, omit the --verbose option.)

Once you determine the path settings you want, start the server without --verbose and
--help.

If mysqld is currently running, you can find out what path settings it is using by executing
this command:

shell> mysqladmin variables
Or:

shell> mysqladmin -h host_name variables
host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means
that the access privileges of the data directory or its contents do not allow the server access.
In this case, you change the permissions for the involved files and directories so that the
server has the right to use them. You can also start the server as root, but this can raise
security issues and should be avoided.

On Unix, change location into the data directory and check the ownership of the data
directory and its contents to make sure the server has access. For example, if the data
directory is ‘/usr/local/mysql/var’, use this command:

shell> 1s -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the account that you use
for running the server, change their ownership to that account:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

If the server fails to start up correctly, check the error log file to see if you can find
out why. Log files are located in the data directory (typically ‘C:\mysql\data’ on Win-
dows, ‘/usr/local/mysql/data’ for a Unix binary distribution, and ‘/usr/local/var’ for
a Unix source distribution). Look in the data directory for files with names of the form
‘host_name.err’ and ‘host_name.log’, where host_name is the name of your server host.
(Older servers on Windows use ‘mysql.err’ as the error log name.) Then check the last
few lines of these files. On Unix, you can use tail to display the last few lines:

shell> tail host_name.err
shell> tail host_name.log

The error log contains information that indicates why the server couldn’t start. For example,
you might see something like this in the log:

000729 14:50:10 bdb: Recovery function for LSN 1 27595 failed
000729 14:50:10 bdb: warning: ./test/tl.db: No such file or directory
000729 14:50:10 Can’t init databases

This means that you didn’t start mysqld with the ——bdb-no-recover option and Berkeley
DB found something wrong with its own log files when it tried to recover your databases.
To be able to continue, you should move away the old Berkeley DB log files from the

Chapter 2: Installing MySQL 129

database directory to some other place, where you can later examine them. The BDB log
files are named in sequence beginning with ‘log.0000000001’, where the number increases
over time.

If you are running mysqld with BDB table support and mysqld dumps core at startup, this
could be due to problems with the BDB recovery log. In this case, you can try starting mysqld
with ——bdb-no-recover. If that helps, then you should remove all BDB log files from the
data directory and try starting mysqld again without the -—bdb-no-recover option.

If either of the following errors occur, it means that some other program (perhaps another
mysqld server) is already using the TCP/IP port or Unix socket file that mysqld is trying
to use:

Can’t start server: Bind on TCP/IP port: Address already in use
Can’t start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the
server before starting mysqld again. (If another server is running, and you really want to
run multiple servers, you can find information about how to do so in Section 5.10 [Multiple
servers|, page 367.)

If no other server is running, try to execute the command telnet your-host-name tcp-
ip-port-number. (The default MySQL port number is 3306.) Then press Enter a couple of
times. If you don’t get an error message like telnet: Unable to connect to remote host:
Connection refused, some other program is using the TCP/IP port that mysqld is trying
to use. You'll need to track down what program this is and disable it, or else tell mysqld
to listen to a different port with the ——port option. In this case, you’ll also need to specify
the port number for client programs when connecting to the server via TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks
connections to it. If so, modify the firewall settings to allow access to the port.

If the server starts but you can’t connect to it, you should make sure that you have an entry
in ‘/etc/hosts’ that looks like this:

127.0.0.1 localhost
This problem occurs only on systems that don’t have a working thread library and for which
MySQL must be configured to use MIT-pthreads.

If you can’t get mysqld to start, you can try to make a trace file to find the problem by
using the --debug option. See Section D.1.2 [Making trace files], page 1279.

2.4.3 Securing the Initial MySQL Accounts

Part of the MySQL installation process is to set up the mysql database containing the grant
tables:

e Windows distributions contain preinitialized grant tables that are installed automati-
cally.

e On Unix, the grant tables are populated by the mysql_install_db program. Some
installation methods run this program for you. Others require that you execute it
manually. For details, see Section 2.4.2 [Unix post-installation|, page 118.

The grant tables define the initial MySQL user accounts and their access privileges. These
accounts are set up as follows:

130 MySQL Technical Reference for Version 5.0.0-alpha

e Two accounts are created with a username of root. These are superuser accounts that
can do anything. The initial root account passwords are empty, so anyone can connect
to the MySQL server as root without a password and be granted all privileges.

e On Windows, one root account is for connecting from the local host and the other
allows connections from any host.

e On Unix, both root accounts are for connections from the local host. Connections
must be made from the local host by specifying a hostname of localhost for one
account, or the actual hostname or IP number for the other.

e Two anonymous-user accounts are created, each with an empty username. The anony-
mous accounts have no passwords, so anyone can use them to connect to the MySQL
server.

e On Windows, one anonymous account is for connections from the local host. It has
all privileges, just like the root accounts. The other is for connections from any
host and has all privileges for the test database or other databases with names
that start with test.

e On Unix, both anonymous accounts are for connections from the local host. Con-
nections must be made from the local host by specifying a hostname of 1localhost
for one account, or the actual hostname or IP number for the other. These ac-
counts have all privileges for the test database or other databases with names
that start with test_.

As noted, none of the initial accounts have passwords. This means that your MySQL
installation is unprotected until you do something about it:

e If you want to prevent clients from connecting as anonymous users without a password,
you should either assign passwords to the anonymous accounts or else remove them.

e You should assign passwords to the MySQL root accounts.

The following instructions describe how to set up passwords for the initial MySQL accounts,
first for the anonymous accounts and then for the root accounts. Replace “newpwd” in the
examples with the actual password that you want to use. The instructions also cover how
to remove the anonymous accounts, should you prefer not to allow anonymous access at all.

You might want to defer setting the passwords until later, so that you don’t need to specify
them while you perform additional setup or testing. However, be sure to set them before
using your installation for any real production work.

To assign passwords to the anonymous accounts, you can use either SET PASSWORD or
UPDATE. In both cases, be sure to encrypt the password using the PASSWORD () function.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ’’@’localhost’ = PASSWORD(’newpwd’);
mysql> SET PASSWORD FOR ’’@’%’ = PASSWORD(’newpwd’) ;

To use SET PASSWORD on Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ’’@’localhost’ = PASSWORD(’newpwd’) ;
mysql> SET PASSWORD FOR ’’@’host_name’ = PASSWORD(’newpwd’) ;

Chapter 2: Installing MySQL 131

In the second SET PASSWORD statement, replace host_name with the name of the server host.
This is the name that is specified in the Host column of the non-localhost record for root
in the user table. If you don’t know what hostname this is, issue the following statement
before using SET PASSWORD:

mysql> SELECT Host, User FROM mysql.user;

Look for the record that has root in the User column and something other than localhost
in the Host column. Then use that Host value in the second SET PASSWORD statement.

The other way to assign passwords to the anonymous accounts is by using UPDATE to modify
the user table directly. Connect to the server as root and issue an UPDATE statement
that assigns a value to the Password column of the appropriate user table records. The
procedure is the same for Windows and Unix. The following UPDATE statement assigns a
password to both anonymous accounts at once:

shell> mysql -u root

mysql> UPDATE mysql.user SET Password = PASSWORD(’newpwd’)
-> WHERE User = ’’;

mysql> FLUSH PRIVILEGES;

After you update the passwords in the user table directly using UPDATE, you must tell the
server to re-read the grant tables with FLUSH PRIVILEGES. Otherwise, the change will go
unnoticed until you restart the server.

If you prefer to remove the anonymous accounts instead, do so as follows:

shell> mysql -u root
mysql> DELETE FROM mysql.user WHERE User = ’’;
mysql> FLUSH PRIVILEGES;

The DELETE statement applies both to Windows and to Unix. On Windows, if you want to
remove only the anonymous account that has the same privileges as root, do this instead:

shell> mysql -u root
mysql> DELETE FROM mysql.user WHERE Host=’localhost’ AND User=’’;
mysql> FLUSH PRIVILEGES;

This account allows anonymous access but has full privileges, so removing it improves
security.

You can assign passwords to the root accounts in several ways. The following discussion
demonstrates three methods:

e Use the SET PASSWORD statement

e Use the mysqladmin command-line client program

e Use the UPDATE statement
To assign passwords using SET PASSWORD, connect to the server as root and issue two SET
PASSWORD statements. Be sure to encrypt the password using the PASSWORD () function.
For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ’root’@’localhost’ = PASSWORD(’newpwd’);
mysql> SET PASSWORD FOR ’root’@’%’ = PASSWORD(’newpwd’) ;

For Unix, do this:

132 MySQL Technical Reference for Version 5.0.0-alpha

shell> mysql -u root
mysql> SET PASSWORD FOR ’root’@’localhost’ = PASSWORD(’newpwd’);
mysql> SET PASSWORD FOR ’root’@’host_name’ = PASSWORD(’newpwd’);

In the second SET PASSWORD statement, replace host_name with the name of the server
host. This is the same hostname that you used when you assigned the anonymous account
passwords.

To assign passwords to the root accounts using mysqladmin, execute the following com-
mands:

shell> mysqladmin -u root password "newpwd"
shell> mysqladmin -u root -h host_name password "newpwd"

These commands apply both to Windows and to Unix. In the second command, replace
host_name with the name of the server host. The double quotes around the password are
not always necessary, but you should use them if the password contains spaces or other
characters that are special to your command interpreter.

If you are using a server from a wery old version of MySQL, the mysqladmin commands
to set the password will fail with the message parse error near ’SET password’. The
solution to this problem is to upgrade the server to a newer version of MySQL.

You can also use UPDATE to modify the user table directly. The following UPDATE statement
assigns a password to both root accounts at once:

shell> mysql -u root

mysql> UPDATE mysql.user SET Password = PASSWORD(’newpwd’)
-> WHERE User = ’root’;

mysql> FLUSH PRIVILEGES;

The UPDATE statement applies both to Windows and to Unix.

After the passwords have been set, you must supply the appropriate password whenever
you connect to the server. For example, if you want to use mysqladmin to shut down the
server, you can do so using this command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note: If you forget your root password after setting it up, the procedure for resetting it is
covered in Section A.4.1 [Resetting permissions|, page 1078.

To set up new accounts, you can use the GRANT statement. For instructions, see Section 5.6.2
[Adding users], page 318.

2.5 Upgrading/Downgrading MySQL

As a general rule, we recommend that when upgrading from one release series to another,
you should go to the next series rather than skipping a series. For example, if you currently
are running MySQL 3.23 and wish to upgrade to a newer series, upgrade to MySQL 4.0
rather than to 4.1 or 5.0.

The following items form a checklist of things you should do whenever you perform an
upgrade:

Chapter 2: Installing MySQL 133

e Read the change log for the release series to which you are upgrading to see what new
features you can use. For example, before upgrading from MySQL 4.1 to 5.0, read the
5.0 news items. See Appendix C [News|, page 1106.

e Before you do an upgrade, back up your databases.

e If you are running MySQL Server on Windows, see Section 2.5.7 [Windows upgrading],
page 145.

e An upgrade may involve changes to the grant tables that are stored in the mysql
database. Occasionally new columns or tables are added to support new features. To
take advantage of these features, be sure that your grant tables are up to date. The
upgrade procedure is described in Section 2.5.8 [Upgrading-grant-tables|, page 146.

e If you are using replication, see Section 6.6 [Replication Upgrade|, page 390 for infor-
mation on upgrading your replication setup.

e If you install a MySQL-Max distribution that includes a server named mysqld-max,
then upgrade later to a non-Max version of MySQL, mysqld_safe will still attempt to
run the old mysqld-max server. If you perform such an upgrade, you should manually
remove the old mysqld-max server to ensure that mysqld_safe runs the new mysqld
server.

You can always move the MySQL format files and data files between different versions on
the same architecture as long as you stay within versions for the same release series of
MySQL. The current production release series is 4.0. If you change the character set when
running MySQL, you must run myisamchk -r —q --set-character-set=charset on all
MyISAM tables. Otherwise, your indexes may not be ordered correctly, because changing the
character set may also change the sort order.

If you upgrade or downgrade from one release series to another, there may be incompati-
bilities in table storage formats. In this case, you can use mysqldump to dump your tables
before upgrading. After upgrading, reload the dump file using mysql to re-create your
tables.

If you are cautious about using new versions, you can always rename your old mysqld before
installing a newer one. For example, if you are using MySQL 4.0.18 and want to upgrade
to 4.1.1, rename your current server from mysqld to mysqld-4.0.18. If your new mysqld
then does something unexpected, you can simply shut it down and restart with your old
mysqld.

If, after an upgrade, you experience problems with recompiled client programs, such as
Commands out of sync or unexpected core dumps, you probably have used old header or
library files when compiling your programs. In this case, you should check the date for your
‘mysql.h’ file and ‘libmysqlclient.a’ library to verify that they are from the new MySQL
distribution. If not, recompile your programs with the new headers and libraries.

If problems occur, such as that the new mysqld server doesn’t want to start or that you can’t
connect without a password, verify that you don’t have some old ‘my.cnf’ file from your
previous installation. You can check this with the -—print-defaults option (for example,
mysqld --print-defaults). If this displays anything other than the program name, you
have an active ‘my.cnf’ file that affects server or client operation.

It is a good idea to rebuild and reinstall the Perl DBD: :mysql module whenever you install
a new release of MySQL. The same applies to other MySQL interfaces as well, such as the
Python MySQLdb module.

134 MySQL Technical Reference for Version 5.0.0-alpha

2.5.1 Upgrading from Version 4.1 to 5.0

In general, you should do the following when upgrading to MySQL 5.0 from 4.1:

e Read the 5.0 news items to see what significant new features you can use in 5.0. See
Section C.1 [News-5.0.x], page 1106.

e If you are running MySQL Server on Windows, see Section 2.5.7 [Windows upgrading],
page 145.

e MySQL 5.0 adds support for stored procedures. This support requires the proc table
in the mysql database. To create this file, you should run the mysql_fix_privilege_
tables script as described in Section 2.5.8 [Upgrading-grant-tables|, page 146.

e If you are using replication, see Section 6.6 [Replication Upgrade|, page 390 for infor-
mation on upgrading your replication setup.

2.5.2 Upgrading from Version 4.0 to 4.1

In general, you should do the following when upgrading to MySQL 4.1 from 4.0:

e Check the items in the change lists found later in this section to see whether any of
them might affect your applications.

e Read the 4.1 news items to see what significant new features you can use in 4.1. See
Section C.2 [News-4.1.x], page 1111.

e If you are running MySQL Server on Windows, see Section 2.5.7 [Windows upgrading],
page 145.

Important note: Early alpha Windows distributions for MySQL 4.1 do not contain
an installer program. See Section 2.2.1.2 [Windows binary installation], page 79 for
instructions on how to install such a distribution.

o After upgrading, update the grant tables to have the new longer Password column
that is needed for secure handling of passwords. The procedure uses mysql_fix_
privilege_tables and is described in Section 2.5.8 [Upgrading-grant-tables], page 146.
Implications of the password-handling change for applications are given later in this
section. If you don’t do this, MySQL will not us the new more secure protocol to
authenticate.

e If you are using replication, see Section 6.6 [Replication Upgrade], page 390 for infor-
mation on upgrading your replication setup.

e The Berkeley DB table handler is updated to DB 4.1 (from 3.2) which has a new log
format. If you have to downgrade back to 4.0 you must use mysqldump to dump your
BDB tables in text format and delete all 1log. XXXXXXXXXX files before you start MySQL
4.0 and reload the data.

e Character set support has been improved. If you have table columns that store charac-
ter data represented in a character set that the 4.1 server now supports directly, you can
convert the columns to the proper character set using the instructions in Section 11.10.2
[Charset-conversion], page 546. Also, database, table, and column identifiers now are
stored internally using Unicode (UTFS) regardless of the default character set. See
Section 10.2 [Legal names|, page 515.

Chapter 2: Installing MySQL 135

e Starting from MySQL 4.1.3, InnoDB uses the same character set comparison functions
as MySQL for non-latinl_swedish_ci character strings that are not BINARY. This
changes the sorting order of space and characters with a code < ASCII(32) in those
character sets. For latinl_swedish_ci character strings and BINARY strings, InnoDB
uses its own pad-spaces-at-end comparison method, which stays unchanged. If you have
an InnoDB table created with MySQL 4.1.2 or earlier, with an index on a non-latinl
character set (in the case of 4.1.0 and 4.1.1 with any character set) CHAR/VARCHAR/or
TEXT column that is not BINARY but may contain characters with a code < ASCII(32),
then you should do ALTER TABLE or OPTIMIZE table on it to regenerate the index, after
upgrading to MySQL 4.1.3 or later.

e MySQL 4.1.3 introduces support for per-connection time zones. See Section 5.8.8 [Time
zone support], page 359. To enable recognition of named time zones, you should create
the time zone tables in the mysql database. For instructions, see Section 2.4 [Post-
installation], page 117.

e mysql_shutdown() has starting from 4.1.3 an extra parameter: SHUTDOWN-level. You
should convert any mysql_shutdown(X) call you have in your application to mysql_
shutdown (X, SHUTDOWN_DEFAULT).

e If you are using an old DBD-mysql module (Msql-MySQL-modules) you have to upgrade
to use the newer DBD-mysql module. Anything above DBD-mysql 2.xx should be fine.

If you don’t upgrade, some methods (such as DBI->do ()) will not notice error conditions
correctly.

e Option —-defaults-file=option-file-name will now give an error if the option file
doesn’t exists.

e Some notes about upgrading from MySQL 4.0 to MySQL 4.1 on Netware: Make sure
to upgrade Perl and PHP versions. Download and install Perl module for MySQL 4.1
from http://forge.novell.com/modules/xfmod/project/showfiles.php?group_
id=1126 and PHP Extension for MySQL 4.1 from http://forge.novell.com/modules/xfmod/projec
id=1078.

Several visible behaviors have changed between MySQL 4.0 and MySQL 4.1 to fix some
critical bugs and make MySQL more compatible with standard SQL. These changes may
affect your applications.

Some of the 4.1 behaviors can be tested in 4.0 before performing a full upgrade to 4.1. We
have added to later MySQL 4.0 releases (from 4.0.12 on) a --new startup option for mysqld.
See Section 5.2.1 [Server options], page 239.
This option gives you the 4.1 behavior for the most critical changes. You can also enable
these behaviors for a given client connection with the SET @@new=1 command, or turn them
off if they are on with SET @@new=0.
If you believe that some of the 4.1 changes will affect you, we recommend that before
upgrading to 4.1, you download the latest MySQL 4.0 version and run it with the —-new
option by adding the following to your config file:

[mysqld-4.0]

new
That way you can test the new behaviors in 4.0 to make sure that your applications work
with them. This will help you have a smooth, painless transition when you perform a full

136 MySQL Technical Reference for Version 5.0.0-alpha

upgrade to 4.1 later. Putting the --new option in the [mysqld-4.0] option group ensures
that you don’t accidentally later run the 4.1 version with the ——new option.

The following lists describe changes that may affect applications and that you should watch
out for when upgrading to version 4.1:

Server Changes:

e All tables and string columns now have a character set. See Chapter 11 [Charset],
page 527. Character set information is displayed by SHOW CREATE TABLE and
mysqldump. (MySQL versions 4.0.6 and above can read the new dump files; older
versions cannot.) This change should not affect applications that use only one
character set.

e MySQL now interprets length specifications in character column definitions in charac-
ters. (Earlier versions interpret them in bytes.) For example, CHAR(N) now means N
characters, not N bytes.

e The table definition format used in ‘.frm’ files has changed slightly in 4.1. MySQL
4.0 versions from 4.0.11 on can read the new ‘.frm’ format directly, but older versions
cannot. If you need to move tables from 4.1 to a version earlier than 4.0.11, you should
use mysqldump. See Section 8.8 [mysqldumpl, page 497.

e Important note: If you upgrade to MySQL 4.1.1 or higher, it is difficult to downgrade
back to 4.0 or 4.1.0! That is because, for earlier versions, InnoDB is not aware of
multiple tablespaces.

e If you are running multiple servers on the same Windows machine, you should use a
different --shared-memory-base-name option for each server.

e The interface to aggregated UDF functions has changed a bit. You must now declare
a xxx_clear () function for each aggregate function XXX ().

Client Changes:

e mysqldump now has the —--opt and --quote-names options enabled by default. You
can turn them off with —-skip-opt and --skip-quote-names.

SQL Changes:

e String comparison now works according to SQL standard: Instead of stripping end
spaces before comparison, we now extend the shorter string with spaces. The problem
with this is that now >a’ > >a\t’, which it wasn’t before. If you have any tables where
you have a CHAR or VARCHAR column in which the last character in the column may be
less than ASCII(32), you should use REPAIR TABLE or myisamchk to ensure that the
table is correct.

e When using multiple-table DELETE statements, you should use the alias of the tables
from which you want to delete, not the actual table name. For example, instead of
doing this:

DELETE test FROM test AS t1, test2 WHERE ...
Do this:
DELETE t1 FROM test AS tl1, test2 WHERE ...
e TIMESTAMP is now returned as a string in ’YYYY-MM-DD HH:MM:SS’ format (from 4.0.12

the ——new option can be used to make a 4.0 server behave as 4.1 in this respect). See
Section 12.3.1.2 [TIMESTAMP 4.1}, page 567.

Chapter 2: Installing MySQL 137

If you want to have the value returned as a number (as MySQL 4.0 does) you should
add +0 to TIMESTAMP columns when you retrieve them:

mysql> SELECT ts_col + O FROM tbl_name;

Display widths for TIMESTAMP columns are no longer supported. For example, if you
declare a column as TIMESTAMP(10), the (10) is ignored.

These changes were necessary for SQL standards compliance. In a future version, a
further change will be made (backward compatible with this change), allowing the
timestamp length to indicate the desired number of digits for fractions of a second.

e Binary values such as OxFFDF now are assumed to be strings instead of numbers. This
fixes some problems with character sets where it’s convenient to input a string as a
binary value. With this change, you should use CAST() if you want to compare binary
values numerically as integers:

mysql> SELECT CAST(OxFEFF AS UNSIGNED INTEGER)
-> < CAST(OxFF AS UNSIGNED INTEGER);
-> 0
If you don’t use CAST(), a lexical string comparison will be done:
mysql> SELECT OxFEFF < OxFF;
-> 1
Using binary items in a numeric context or comparing them using the = operator should
work as before. (The --new option can be used from 4.0.13 on to make a 4.0 server
behave as 4.1 in this respect.)

e For functions that produce a DATE, DATETIME, or TIME value, the result returned to the
client now is fixed up to have a temporal type. For example, in MySQL 4.1, you get
this result:

mysql> SELECT CAST(’2001-1-1’ AS DATETIME);
-> 22001-01-01 00:00:00°
In MySQL 4.0, the result is different:
mysql> SELECT CAST(’2001-1-1’ AS DATETIME);
-> 22001-01-01"

e DEFAULT values no longer can be specified for AUTO_INCREMENT columns. (In 4.0, a
DEFAULT value is silently ignored; in 4.1, an error occurs.)

e LIMIT no longer accepts negative arguments. Use some large number (maximum
18446744073709551615) instead of -1.

e SERIALIZE is no longer a valid mode value for the sql_mode variable. You should
use SET TRANSACTION ISOLATION LEVEL SERIALIZABLE instead. SERIALIZE is no
longer valid for the --sql-mode option for mysqld, either. Use --transaction-
isolation=SERIALIZABLE instead.

C API Changes:

e Some C API calls such as mysql_real_query() now return 1 on error, not -1. You
may have to change some old applications if they use constructs like this:

if (mysql_real_query(mysql_object, query, query_length) == -1)
{

printf ("Got error");

138 MySQL Technical Reference for Version 5.0.0-alpha

}
Change the call to test for a non-zero value instead:

if (mysql_real_query(mysql_object, query, query_length) != 0)
{
printf ("Got error");

}
Password-Handling Changes:

The password hashing mechanism has changed in 4.1 to provide better security, but this
may cause compatibility problems if you still have clients that use the client library from
4.0 or earlier. (It is very likely that you will have 4.0 clients in situations where clients
connect from remote hosts that have not yet upgraded to 4.1.) The following list indicates
some possible upgrade strategies. They represent various tradeoffs between the goal of
compatibility with old clients and the goal of security.

e Only upgrade the client to use 4.1 client libraries (not the server). No behavior will
change (except the return value of some API calls), but you cannot use any of the
new features provided by the 4.1 client/server protocol, either. (MySQL 4.1 has an
extended client /server protocol that offers such features as prepared statements and
multiple result sets.) See Section 21.2.4 [C API Prepared statements|, page 969.

e Upgrade to 4.1 and run the mysql_fix_privilege_tables script to widen the
Password column in the user table so that it can hold long password hashes. But run
the server with the --old-passwords option to provide backward compatibility that
allows pre-4.1 clients to continue to connect to their short-hash accounts. Eventually,
when all your clients are upgraded to 4.1, you can stop using the --old-passwords
server option. You can also change the passwords for your MySQL accounts to use
the new more secure format.

e Upgrade to 4.1 and run the mysql_fix_privilege_tables script to widen the
Password column in the user table. If you know that all clients also have been
upgraded to 4.1, don’t run the server with the --old-passwords option. Instead,
change the passwords on all existing accounts so that they have the new format. A
pure-4.1 installation is the most secure.

e Some notes about upgrading from MySQL 4.0 to MySQL 4.1 on Netware:
Make sure to upgrade Perl and PHP versions. Download Perl 5 for Netware
from http://forge.novell.com/modules/xfmod/project/?perl5) and PHP from
http://forge.novell.com/modules/xfmod/project /?php.

Further background on password hashing with respect to client authentication and
password-changing operations may be found in Section 5.5.9 [Password hashing], page 311
and Section A.2.3 [Old client], page 1067.

2.5.3 Upgrading from Version 3.23 to 4.0

In general, you should do the following when upgrading to MySQL 4.0 from 3.23:

e Check the items in the change lists found later in this section to see whether any of
them might affect your applications.

Chapter 2: Installing MySQL 139

e Read the 4.0 news items to see what significant new features you can use in 4.0. See
Section C.3 [News-4.0.x|, page 1132.

e If you are running MySQL Server on Windows, see Section 2.5.7 [Windows upgrading],
page 145.

e After upgrading, update the grant tables to add new privileges and features. The pro-
cedure uses the mysql_fix_privilege_tables script and is described in Section 2.5.8
[Upgrading-grant-tables|, page 146.

e If you are using replication, see Section 6.6 [Replication Upgrade|, page 390 for infor-
mation on upgrading your replication setup.

e Edit any MySQL startup scripts or option files to not use any of the deprecated options
described later in this section.

e Convert your old ISAM files to MyISAM files. One way to do this is with the mysql_
convert_table_format script. (This is a Perl script; it requires that DBI be installed.)
To convert the tables in a given database, use this command:

shell> mysql_convert_table_format database db_name

Note that this should be used only if all tables in the given database are ISAM or MyISAM
tables. To avoid converting tables of other types to MyISAM, you can explicitly list the
names of your ISAM tables after the database name on the command line.

Individual tables can be changed to MyISAM by using the following ALTER TABLE state-
ment for each table to be converted:

mysql> ALTER TABLE tbl_name TYPE=MyISAM;
If you are not sure of the table type for a given table, use this statement:
mysql> SHOW TABLE STATUS LIKE ’tbl_name’;

e Ensure that you don’t have any MySQL clients that use shared libraries (like the
Perl DBD: :mysql module). If you do, you should recompile them, because the data
structures used in ‘libmysqlclient.so’ have changed. The same applies to other
MySQL interfaces as well, such as the Python MySQLdb module.

MySQL 4.0 will work even if you don’t perform the preceding actions, but you will not be
able to use the new security privileges in MySQL 4.0 and you may run into problems when
upgrading later to MySQL 4.1 or newer. The ISAM file format still works in MySQL 4.0,
but is deprecated and is not compiled in by default as of MySQL 4.1. MyISAM tables should
be used instead.

Old clients should work with a Version 4.0 server without any problems.

Even if you perform the preceding actions, you can still downgrade to MySQL 3.23.52 or
newer if you run into problems with the MySQL 4.0 series. In this case, you must use
mysqldump to dump any tables that use full-text indexes and reload the dump file into the
3.23 server. This is necessary because 4.0 uses a new format for full-text indexing.

The following lists describe changes that may affect applications and that you should watch
out for when upgrading to version 4.0:

Server Changes:

e MySQL 4.0 has a lot of new privileges in the mysql.user table. See Section 5.5.3
[Privileges provided], page 296.

140 MySQL Technical Reference for Version 5.0.0-alpha

To get these new privileges to work, you must update the grant tables. The procedure
is described in Section 2.5.8 [Upgrading-grant-tables|, page 146. Until you do this,
all accounts have the SHOW DATABASES, CREATE TEMPORARY TABLES, and LOCK TABLES
privileges. SUPER and EXECUTE privileges take their value from PROCESS. REPLICATION
SLAVE and REPLICATION CLIENT take their values from FILE.

If you have any scripts that create new MySQL user accounts, you may want to change
them to use the new privileges. If you are not using GRANT commands in the scripts,
this is a good time to change your scripts to use GRANT instead of modifying the grant
tables directly.

From version 4.0.2 on, the option --safe-show-database is deprecated (and no longer
does anything). See Section 5.4.3 [Privileges options|, page 290.

If you get Access denied errors for new users in version 4.0.2 and up, you should check
whether you need some of the new grants that you didn’t need before. In particular,
you will need REPLICATION SLAVE (instead of FILE) for new slave servers.

e safe_mysqld has been renamed to mysqld_safe. For backward compatibility, binary
distributions will for some time include safe_mysqld as a symlink to mysqld_safe.

e InnoDB support is now included by default in binary distributions. If you build MySQL
from source, InnoDB is configured in by default. If you do not use InnoDB and want
to save memory when running a server that has InnoDB support enabled, use the --
skip-innodb server startup option. To compile MySQL without InnoDB support, run
configure with the ——without-innodb option.

e Values for the startup parameters myisam_max_extra_sort_file_size and myisam_
max_extra_sort_file_size now are given in bytes (they were given in megabytes

before 4.0.3).

e mysqld now has the option --temp-pool enabled by default because this gives better
performance with some operating systems (most notably Linux).

e The mysqld startup options --skip-locking and --enable-locking were renamed
to ——skip-external-locking and --external-locking.

e External system locking of MyISAM/ISAM files is now turned off by default. You can
turn this on with -—external-locking. (However, this is never needed for most users.)

e The following startup variables and options have been renamed:

Old Name New Name
myisam_bulk_insert_tree_size bulk_insert_buffer_size
query_cache_startup_type query_cache_type
record_buffer read_buffer_size
record_rnd_buffer read_rnd_buffer_size
sort_buffer sort_buffer_size

warnings log-warnings

-—-err-log --log-error (for mysqld_safe)

The startup options record_buffer, sort_buffer, and warnings will still work in
MySQL 4.0 but are deprecated.

SQL Changes:
e The following SQL variables have been renamed:
0Old Name New Name

Chapter 2: Installing MySQL 141

SQL_BIG_TABLES BIG_TABLES
SQL_LOW_PRIORITY_UPDATES LOW_PRIORITY_UPDATES
SQL_MAX_JOIN_SIZE MAX_JOIN_SIZE
SQL_QUERY_CACHE_TYPE QUERY_CACHE_TYPE

The old names still work in MySQL 4.0 but are deprecated.

e You have to use SET GLOBAL SQL_SLAVE_SKIP_COUNTER=skip_count instead of SET
SQL_SLAVE_SKIP_COUNTER=skip_count.

e SHOW MASTER STATUS now returns an empty set if binary logging is not enabled.
e SHOW SLAVE STATUS now returns an empty set if the slave is not initialized.

e SHOW INDEX has two more columns than it had in 3.23 (Null and Index_type).
e The format of SHOW OPEN TABLES has changed.

e ORDER BY col_name DESC sorts NULL values last, as of MySQL 4.0.11. In 3.23 and in
earlier 4.0 versions, this was not always consistent.

e CHECK, LOCALTIME, and LOCALTIMESTAMP now are reserved words.

e DOUBLE and FLOAT columns now honor the UNSIGNED flag on storage (before, UNSIGNED
was ignored for these columns).

e The result of all bitwise operators (|, &, <<, >>, and ~) is now unsigned. This may
cause problems if you are using them in a context where you want a signed result. See
Section 13.7 [Cast Functions], page 631.

Note: When you use subtraction between integer values where one is of type UNSIGNED,
the result will be unsigned. In other words, before upgrading to MySQL 4.0, you
should check your application for cases in which you are subtracting a value from an
unsigned entity and want a negative answer or subtracting an unsigned value from an
integer column. You can disable this behavior by using the -—sql-mode=NO_UNSIGNED_
SUBTRACTION option when starting mysqld. See Section 5.2.2 [Server SQL mode],
page 249.

e You should use integers to store values in BIGINT columns (instead of using strings,
as you did in MySQL 3.23). Using strings will still work, but using integers is more
efficient.

e In MySQL 3.23, INSERT INTO ... SELECT always had IGNORE enabled. As of 4.0.1,
MySQL will stop (and possibly roll back) by default in case of an error unless you
specify IGNORE.

e You should use TRUNCATE TABLE when you want to delete all rows from a table and you
don’t need to obtain a count of the number of rows that were deleted. (DELETE FROM
tbl_name returns a row count in 4.0 and doesn’t reset the AUTO_INCREMENT counter,
and TRUNCATE TABLE is faster.)

e You will get an error if you have an active transaction or LOCK TABLES statement when
trying to execute TRUNCATE TABLE or DROP DATABASE.

e To use MATCH ... AGAINST (... IN BOOLEAN MODE) full-text searches with your tables,
you must rebuild their indexes with REPAIR TABLE tbl_name USE_FRM. If you attempt
a boolean full-text search without rebuilding the indexes this way, the search will return
incorrect results. See Section 13.6.4 [Fulltext Fine-tuning], page 629.

e LOCATE() and INSTR() are case sensitive if one of the arguments is a binary string.
Otherwise they are case insensitive.

142

MySQL Technical Reference for Version 5.0.0-alpha

STRCMP () now uses the current character set when performing comparisons. This makes
the default comparison behavior not case sensitive unless one or both of the operands
are binary strings.

HEX (str) now returns the characters in str converted to hexadecimal. If you want
to convert a number to hexadecimal, you should ensure that you call HEX() with a
numeric argument.

RAND (seed) returns a different random number series in 4.0 than in 3.23; this was done
to further differentiate RAND (seed) and RAND (seed+1).

The default type returned by IFNULL(A,B) is now set to be the more “general” of the
types of A and B. (The general-to-specific order is string, REAL, INTEGER).

C API Changes:

The old C API functions mysql_drop_db(), mysql_create_db(), and
mysql_connect() are no longer supported unless you compile MySQL with
CFLAGS=-DUSE_OLD_FUNCTIONS. However, it is preferable to change client programs
to use the new 4.0 API instead.

In the MYSQL_FIELD structure, length and max_length have changed from unsigned
int to unsigned long. This should not cause any problems, except that they may
generate warning messages when used as arguments in the printf () class of functions.

Multi-threaded clients should use mysql_thread_init() and mysql_thread_end().
See Section 21.2.14 [Threaded clients]|, page 1008.

Other Changes:

If you want to recompile the Perl DBD: :mysql module, use a recent version. Version
2.9003 is recommended. Versions older than 1.2218 should not be used because they
use the deprecated mysql_drop_db() call.

2.5.4 Upgrading from Version 3.22 to 3.23

MySQL 3.22 and 3.21 clients will work without any problems with a MySQL 3.23 server.

When upgrading to MySQL 3.23 from an earlier version, note the following changes:
Table Changes:

MySQL 3.23 supports tables of the new MyISAM type and the old ISAM type. By
default, all new tables are created with type MyISAM unless you start mysqld with the
--default-table-type=isam option. You don’t have to convert your old ISAM tables
to use them with MySQL 3.23. You can convert an ISAM table to MyISAM format
with ALTER TABLE tbl_name TYPE=MyISAM or the Perl script mysql_convert_table_
format.

All tables that use the tis620 character set must be fixed with myisamchk -r or REPAIR
TABLE.

If you are using the german character sort order for ISAM tables, you must repair them
with isamchk -r, because we have made some changes in the sort order.

Client Program Changes:

Chapter 2: Installing MySQL 143

The MySQL client mysql is now by default started with the ——-no-named-commands
(-g) option. This option can be disabled with -—enable-named-commands (-G). This
may cause incompatibility problems in some cases—for example, in SQL scripts that
use named commands without a semicolon. Long format commands still work from
the first line.

If you want your mysqldump files to be compatible between MySQL 3.22 and 3.23, you
should not use the -—opt or --all option to mysqldump.

SQL Changes:

If you do a DROP DATABASE on a symbolically linked database, both the link and the
original database are deleted. This didn’t happen in MySQL 3.22 because configure
didn’t detect the availability of the readlink () system call.

OPTIMIZE TABLE now works only for MyISAM tables. For other table types, you can use
ALTER TABLE to optimize the table. During OPTIMIZE TABLE, the table is now locked
to prevent it from being used by other threads.

Date functions that work on parts of dates (such as MONTH()) will now return O for
0000-00-00 dates. In MySQL 3.22, these functions returned NULL.

The default return type of IF () now depends on both arguments, not just the first one.

AUTO_INCREMENT columns should not be used to store negative numbers. The reason
for this is that negative numbers caused problems when wrapping from —1 to 0. You
should not store 0 in AUTO_INCREMENT columns, either; CHECK TABLE will complain
about 0 values because they may change if you dump and restore the table. AUTO_
INCREMENT for MyISAM tables is now handled at a lower level and is much faster than
before. In addition, for MyISAM tables, old numbers are no longer reused, even if you
delete rows from the table.

CASE, DELAYED, ELSE, END, FULLTEXT, INNER, RIGHT, THEN, and WHEN now are reserved
words.

FLOAT (p) now is a true floating-point type and not a value with a fixed number of
decimals.

When declaring columns using a DECIMAL (length,dec) type, the length argument no
longer includes a place for the sign or the decimal point.

A TIME string must now be of one of the following formats: [[[DAYS]
[HIH:IMM:]1SS[.fraction] or [[[[[HIHIH]HIMM]SS[.fraction].

LIKE now compares strings using the same character comparison rules as for the =
operator. If you require the old behavior, you can compile MySQL with the CXXFLAGS=-
DLIKE_CMP_TOUPPER flag.

REGEXP now is case insensitive if neither of the strings is a binary string.

When you check or repair MyISAM (‘.MYI’) tables, you should use the CHECK TABLE
statement or the myisamchk command. For ISAM (‘.ISM’) tables, use the isamchk
command.

Check all your calls to DATE_FORMAT() to make sure that there is a ‘%’ before each
format character. (MySQL 3.22 already allowed this syntax, but now ‘%’ is required.)

In MySQL 3.22, the output of SELECT DISTINCT ... was almost always sorted. In
MySQL 3.23, you must use GROUP BY or ORDER BY to obtain sorted output.

144 MySQL Technical Reference for Version 5.0.0-alpha

e SUM() now returns NULL instead of 0 if there are no matching rows. This is required
by standard SQL.

e An AND or OR with NULL values will now return NULL instead of 0. This mostly affects
queries that use NOT on an AND/OR expression as NOT NULL = NULL.

e LPAD() and RPAD() now shorten the result string if it’s longer than the length argument.
C API Changes:

e mysql_fetch_fields_direct() now is a function instead of a macro. It now returns
a pointer to a MYSQL_FIELD instead of a MYSQL_FIELD.

e mysql_num_fields() no longer can be used on a MYSQL* object (it’s now a function
that takes a MYSQL_RES* value as an argument). With a MYSQL* object, you now should
use mysql_field_count () instead.

2.5.5 Upgrading from Version 3.21 to 3.22

Nothing that affects compatibility has changed between versions 3.21 and 3.22. The only
pitfall is that new tables that are created with DATE type columns will use the new way to
store the date. You can’t access these new columns from an old version of mysqld.

When upgrading to MySQL 3.23 from an earlier version, note the following changes:

e After installing MySQL Version 3.22, you should start the new server and then run the
mysql_fix_privilege_tables script. This will add the new privileges that you need
to use the GRANT command. If you forget this, you will get Access denied when you
try to use ALTER TABLE, CREATE INDEX, or DROP INDEX. The procedure for updating
the grant tables is described in Section 2.5.8 [Upgrading-grant-tables], page 146.

e The C API interface to mysql_real_connect () has changed. If you have an old client
program that calls this function, you must pass a 0 for the new db argument (or recode
the client to send the db element for faster connections). You must also call mysql_
init () before calling mysql_real_connect (). This change was done to allow the new
mysql_options() function to save options in the MYSQL handler structure.

e The mysqld variable key_buffer has been renamed to key_buffer_size, but you can
still use the old name in your startup files.

2.5.6 Upgrading from Version 3.20 to 3.21

If you are running a version older than Version 3.20.28 and want to switch to Version 3.21,
you need to do the following:

You can start the mysqld Version 3.21 server with the ——old-protocol option to use it
with clients from a Version 3.20 distribution. In this case, the server uses the old pre-3.21
password () checking rather than the new method. Also, the new client function mysql_
errno () will not return any server error, only CR_UNKNOWN_ERROR. The function does work
for client errors.

If you are not using the --old-protocol option to mysqld, you will need to make the
following changes:

e All client code must be recompiled. If you are using ODBC, you must get the new
MyODBC 2.x driver.

Chapter 2: Installing MySQL 145

e The scripts/add_long_password script must be run to convert the Password field in
the mysql.user table to CHAR(16).

e All passwords must be reassigned in the mysql.user table to get 62-bit rather than
31-bit passwords.

e The table format hasn’t changed, so you don’t have to convert any tables.
MySQL 3.20.28 and above can handle the new user table format without affecting clients.
If you have a MySQL version earlier than 3.20.28, passwords will no longer work with it

if you convert the user table. So to be safe, you should first upgrade to at least Version
3.20.28 and then upgrade to Version 3.21.

The new client code works with a 3.20.x mysqld server, so if you experience problems with
3.21.x, you can use the old 3.20.x server without having to recompile the clients again.

If you are not using the ——old-protocol option to mysqld, old clients will be unable to
connect and will issue the following error message:

ERROR: Protocol mismatch. Server Version = 10 Client Version = 9

The Perl DBI interface also supports the old mysqlperl interface. The only change you
have to make if you use mysqlperl is to change the arguments to the connect () function.
The new arguments are: host, database, user, and password (note that the user and
password arguments have changed places).

The following changes may affect queries in old applications:
e HAVING must now be specified before any ORDER BY clause.
e The parameters to LOCATE() have been swapped.

e There are some new reserved words. The most noticeable are DATE, TIME, and
TIMESTAMP.

2.5.7 Upgrading MySQL Under Windows

When upgrading MySQL under Windows, please follow these steps:

Download the latest Windows distribution of MySQL.

Choose a time of day with low usage, where a maintenance break is acceptable.
Alert the users who still are active about the maintenance break.

Stop the running MySQL Server (for example, with NET STOP MySQL or with the
Services utility if you are running MySQL as a service, or with mysqladmin
shutdown otherwise).

Ll

5. Exit the WinMySQLAdmin program if it is running.

6. Run the installation script of the Windows distribution by clicking the Install button
in WinZip and following the installation steps of the script.

Important note: Early alpha Windows distributions for MySQL 4.1 do not contain
an installer program. See Section 2.2.1.2 [Windows binary installation], page 79 for
instructions on how to install such a distribution.

7. You may either overwrite your old MySQL installation (usually located at ‘C:\mysql’),
or install it into a different directory, such as C:\mysql4. Overwriting the old installa-
tion is recommended.

146 MySQL Technical Reference for Version 5.0.0-alpha

8. Restart the server. For example, use NET START MySQL if you run MySQL as a service,
or invoke mysqld directly otherwise.

9. Update the grant tables. The procedure is described in Section 2.5.8 [Upgrading-grant-
tables], page 146.

Possible error situations:

A system error has occurred.

System error 1067 has occurred.

The process terminated unexpectedly.
These errors mean that your option file (by default ‘C:\my.cnf’) contains an option that
cannot be recognized by MySQL. You can verify that this is the case by trying to restart
MySQL with the option file renamed to prevent the server from using it. (For example,
rename ‘C:\my.cnf’ to ‘C:\my_cnf.o0ld’.) Once you have verified it, you need to identify
which option is the culprit. Create a new ‘my.cnf’ file and move parts of the old file to it
(restarting the server after you move each part) until you determine which option causes
server startup to fail.

2.5.8 Upgrading the Grant Tables

Some releases introduce changes to the structure of the grant tables (the tables in the mysql
database) to add new privileges or features. To make sure that your grant tables are current
when you update to a new version of MySQL, you should update your grant tables as well.

On Unix or Unix-like systems, update the grant tables by running the mysql_fix_
privilege_tables script:

shell> mysql_fix_privilege_tables

You must run this script while the server is running. It attempts to connect to the server
running on the local host as root. If your root account requires a password, indicate the
password on the command line. For MySQL 4.1 and up, specify the password like this:

shell> mysql_fix_privilege_tables --password=root_password
Prior to MySQL 4.1, specify the password like this:
shell> mysql_fix_privilege_tables root_password

The mysql_fix_privilege_tables script performs any actions necessary to convert your
grant tables to the current format. You might see some Duplicate column name warnings
as it runs; you can ignore them.

After running the script, stop the server and restart it.

On Windows systems, there isn’t an easy way to update the grant tables un-
til MySQL 4.0.15. From wversion 4.0.15 on, MySQL distributions include a
‘mysql_fix_privilege_tables.sql’ SQL script that you can run using the mysql client.
If your MySQL installation is located at ‘C:\mysql’, the commands look like this:

C:\> C:\mysql\bin\mysql -u root -p mysql
mysql> SOURCE C:\mysql\scripts\mysql_fix_privilege_tables.sql
If your installation is located in some other directory, adjust the pathnames appropriately.

The mysql command will prompt you for the root password; enter it when prompted.

Chapter 2: Installing MySQL 147

As with the Unix procedure, you might see some Duplicate column name warnings as mysql
processes the statements in the ‘mysql_fix_privilege_tables.sql’ script; you can ignore
them.

After running the script, stop the server and restart it.

2.5.9 Copying MySQL Databases to Another Machine

If you are using MySQL 3.23 or later, you can copy the ‘.frm’;, ‘.MYI’, and ‘.MYD’ files
for MyISAM tables between different architectures that support the same floating-point for-
mat. (MySQL takes care of any byte-swapping issues.) See Section 15.1 [MyISAM Tables],
page 767.
The MySQL ISAM data and index files (‘.ISD’ and ‘x.ISM’, respectively) are architecture
dependent and in some cases operating system dependent. If you want to move your appli-
cations to another machine that has a different architecture or operating system than your
current machine, you should not try to move a database by simply copying the files to the
other machine. Use mysqldump instead.
By default, mysqldump will create a file containing SQL statements. You can then transfer
the file to the other machine and feed it as input to the mysql client.
Try mysqldump --help to see what options are available. If you are moving the data to
a newer version of MySQL, you should use mysqldump --opt to take advantage of any
optimizations that result in a dump file that is smaller and can be processed faster.
The easiest (although not the fastest) way to move a database between two machines is to
run the following commands on the machine on which the database is located:

shell> mysqladmin -h ’other_hostname’ create db_name

shell> mysqldump --opt db_name | mysql -h ’other_hostname’ db_name
If you want to copy a database from a remote machine over a slow network, you can use:

shell> mysqladmin create db_name

shell> mysqldump -h ’other_hostname’ --opt —-compress db_name | mysql db_namel]
You can also store the result in a file, then transfer the file to the target machine and load
the file into the database there. For example, you can dump a database to a file on the
source machine like this:

shell> mysqldump --quick db_name | gzip > db_name.contents.gz
(The file created in this example is compressed.) Transfer the file containing the database
contents to the target machine and run these commands there:

shell> mysqladmin create db_name

shell> gunzip < db_name.contents.gz | mysql db_name
You can also use mysqldump and mysqlimport to transfer the database. For big tables,
this is much faster than simply using mysqldump. In the following commands, DUMPDIR
represents the full pathname of the directory you use to store the output from mysqldump.
First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR

shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the
target machine and load the files into MySQL there:

148 MySQL Technical Reference for Version 5.0.0-alpha

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Also, don’t forget to copy the mysql database because that is where the user, db, and host
grant tables are stored. You might have to run commands as the MySQL root user on the
new machine until you have the mysql database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-
privileges so that the server reloads the grant table information.

2.6 Operating System-Specific Notes

2.6.1 Linux Notes

This section discusses issues that have been found to occur on Linux. The first few subsec-
tions describe general operating system-related issues, problems that can occur when using
binary or source distributions, and post-installation issues. The remaining subsections dis-
cuss problems that occur with Linux on specific platforms.

Note that most of these problems occur on older versions of Linux. If you are running a
recent version, you likely will see none of them.

2.6.1.1 Linux Operating System Notes

MySQL needs at least Linux Version 2.0.

Warning: We have seen some strange problems with Linux 2.2.14 and MySQL on SMP
systems. We also have reports from some MySQL users that they have encountered serious
stability problems using MySQL with kernel 2.2.14. If you are using this kernel, you should
upgrade to 2.2.19 (or newer) or to a 2.4 kernel. If you have a multiple-CPU box, then you
should seriously consider using 2.4 because it will give you a significant speed boost. Your
system also will be more stable.

When using LinuxThreads, you will see a minimum of three mysqld processes running.
These are in fact threads. There will be one thread for the LinuxThreads manager, one
thread to handle connections, and one thread to handle alarms and signals.

2.6.1.2 Linux Binary Distribution Notes

The Linux-Intel binary and RPM releases of MySQL are configured for the highest possible
speed. We are always trying to use the fastest stable compiler available.

The binary release is linked with -static, which means you do not normally need to worry
about which version of the system libraries you have. You need not install LinuxThreads,
either. A program linked with -static is slightly larger than a dynamically linked program,
but also slightly faster (3-5%). However, one problem with a statically linked program is
that you can’t use user-defined functions (UDFs). If you are going to write or use UDF's
(this is something for C or C++ programmers only), you must compile MySQL yourself
using dynamic linking.

Chapter 2: Installing MySQL 149

A known issue with binary distributions is that on older Linux systems that use libc
(such as Red Hat 4.x or Slackware), you will get some non-fatal problems with hostname
resolution. If your system uses libc rather than glibc2, you probably will encounter
some difficulties with hostname resolution and getpwnam(). This happens because glibc
unfortunately depends on some external libraries to implement hostname resolution and
getpwent (), even when compiled with -static. These problems manifest themselves in
two ways:

e You probably will see the following error message when you run mysql_install_db:
Sorry, the host ’xxxx’ could not be looked up

You can deal with this by executing mysql_install_db --force, which will not ex-
ecute the resolveip test in mysql_install_db. The downside is that you can’t use
hostnames in the grant tables: Except for localhost, you must use IP numbers in-
stead. If you are using an old version of MySQL that doesn’t support —-force, you
must manually remove the resolveip test in mysql_install using an editor.

e You also may see the following error when you try to run mysqld with the —-user
option:

getpwnam: No such file or directory

To work around this, start mysqld by using the su command rather than by specifying
the --—user option. This causes the system itself to change the user ID of the mysqld
process so that mysqld need not do so.

Another solution, which solves both problems, is to not use a binary distribution. Get a
MySQL source distribution (in RPM or tar.gz format) and install that instead.

On some Linux 2.2 versions, you may get the error Resource temporarily unavailable
when clients make a lot of new connections to a mysqld server over TCP/IP. The problem
is that Linux has a delay between the time that you close a TCP/IP socket and the time
that the system actually frees it. There is room for only a finite number of TCP/IP slots, so
you will encounter the resource-unavailable error if clients attempt too many new TCP/IP
connections during a short time. For example, you may see the error when you run the
MySQL ‘test-connect’ benchmark over TCP/IP.

We have inquired about this problem a few times on different Linux mailing lists but have
never been able to find a suitable resolution. The only known “fix” is for the clients to use
persistent connections, or, if you are running the database server and clients on the same
machine, to use Unix socket file connections rather than TCP/IP connections.

2.6.1.3 Linux Source Distribution Notes

The following notes regarding glibc apply only to the situation when you build MySQL
yourself. If you are running Linux on an x86 machine, in most cases it is much better
for you to just use our binary. We link our binaries against the best patched version of
glibc we can come up with and with the best compiler options, in an attempt to make it
suitable for a high-load server. For a typical user, even for setups with a lot of concurrent
connections or tables exceeding the 2GB limit, our binary is the best choice in most cases.
After reading the following text, if you are in doubt about what to do, try our binary first
to see whether it meets your needs. If you discover that it is not good enough, then you

150 MySQL Technical Reference for Version 5.0.0-alpha

may want to try your own build. In that case, we would appreciate a note about it so that
we can build a better binary next time.

MySQL uses LinuxThreads on Linux. If you are using an old Linux version that doesn’t
have glibc2, you must install LinuxThreads before trying to compile MySQL. You can get
LinuxThreads at http://dev.mysql.com/downloads/os-1linux.html.

Note that glibc versions before and including Version 2.1.1 have a fatal bug in pthread_
mutex_timedwait () handling, which is used when you issue INSERT DELAYED statements.
We recommend that you not use INSERT DELAYED before upgrading glibc.

Note that Linux kernel and the LinuxThread library can by default only have 1,024 threads.
If you plan to have more than 1,000 concurrent connections, you will need to make some
changes to LinuxThreads:

e Increase PTHREAD_THREADS_MAX in ‘sysdeps/unix/sysv/linux/bits/local_lim.h’
to 4096 and decrease STACK_SIZE in ‘linuxthreads/internals.h’ to 256KB. The
paths are relative to the root of glibc. (Note that MySQL will not be stable with
around 600-1000 connections if STACK_SIZE is the default of 2MB.)

e Recompile LinuxThreads to produce a new ‘libpthread.a’ library, and relink MySQL
against it.

The page http://www.volano.com/linuxnotes.html contains additional information
about circumventing thread limits in LinuxThreads.

There is another issue that greatly hurts MySQL performance, especially on SMP
systems. The mutex implementation in LinuxThreads in glibc 2.1 is very bad
for programs with many threads that hold the mutex only for a short time. This
produces a paradoxical result: If you link MySQL against an unmodified LinuxThreads,
removing processors from an SMP actually improves MySQL performance in many
cases. We have made a patch available for glibc 2.1.3 to correct this behavior
(http://www.mysql.com/Downloads/Linux/linuxthreads-2.1-patch).

With glibc 2.2.2, MySQL 3.23.36 will use the adaptive mutex, which is much better than
even the patched one in glibc 2.1.3. Be warned, however, that under some conditions,
the current mutex code in glibc 2.2.2 overspins, which hurts MySQL performance. The
likelihood that this condition will occur can be reduced by renicing the mysqld process to
the highest priority. We have also been able to correct the overspin behavior with a patch,
available at http://www.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch. It
combines the correction of overspin, maximum number of threads, and stack spacing
all in one. You will need to apply it in the linuxthreads directory with patch -p0O
</tmp/linuxthreads-2.2.2.patch. We hope it will be included in some form in future
releases of glibc 2.2. In any case, if you link against glibc 2.2.2; you still need to correct
STACK_SIZE and PTHREAD_THREADS_MAX. We hope that the defaults will be corrected
to some more acceptable values for high-load MySQL setup in the future, so that the
commands needed to produce your own build can be reduced to ./configure; make;
make install.

We recommend that you use these patches to build a special static version of 1ibpthread.a
and use it only for statically linking against MySQL. We know that the patches are safe for
MySQL and significantly improve its performance, but we cannot say anything about other
applications. If you link other applications that require LinuxThreads against the patched

Chapter 2: Installing MySQL 151

static version of the library, or build a patched shared version and install it on your system,
you do so at your own risk.

If you experience any strange problems during the installation of MySQL, or with some
common utilities hanging, it is very likely that they are either library or compiler related.
If this is the case, using our binary will resolve them.

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

e Link clients with the -W1,r/full/path/to/libmysqlclient.so flag rather than with
-Lpath).
e Copy libmysqclient.so to ‘/usr/1lib’.

e Add the pathname of the directory where ‘libmysqlclient.so’ is located to the LD_
RUN_PATH environment variable before running your client.

If you are using the Fujitsu compiler (fcc/FCC), you will have some problems compiling
MySQL because the Linux header files are very gcc oriented. The following configure line
should work with fcc/FCC:

CC=fcc CFLAGS="-0 -K fast -K lib -K omitfp -Kpreex -D_GNU_SOURCE \
-DCONST=const -DNO_STRTOLL_PROTO" \

CXX=FCC CXXFLAGS="-0 -K fast -K 1ib \
-K omitfp -K preex --no_exceptions --no_rtti -D_GNU_SOURCE \
-DCONST=const -Dalloca=__builtin_alloca -DNO_STRTOLL_PROTO \
’-D_EXTERN_INLINE=static __inline’" \

./configure \
—--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-1ldflags=-all-static --disable-shared \
--with-low-memory

2.6.1.4 Linux Post-Installation Notes

mysql.server can be found in the ‘support-files’ directory under the MySQL installa-
tion directory or in a MySQL source tree. You can install it as ‘/etc/init.d/mysql’ for
automatic MySQL startup and shutdown. See Section 2.4.2.2 [Automatic start], page 124.

If MySQL can’t open enough files or connections, it may be that you haven’t configured
Linux to handle enough files.

In Linux 2.2 and onward, you can check the number of allocated file handles as follows:
shell> cat /proc/sys/fs/file-max

shell> cat /proc/sys/fs/dquot-max

shell> cat /proc/sys/fs/super-max
If you have more than 16MB of memory, you should add something like the following to
your init scripts (for example, ‘/etc/init.d/boot.local’ on SuSE Linux):

echo 65536 > /proc/sys/fs/file-max
echo 8192 > /proc/sys/fs/dquot-max

152 MySQL Technical Reference for Version 5.0.0-alpha

echo 1024 > /proc/sys/fs/super-max

You can also run the echo commands from the command line as root, but these settings
will be lost the next time your computer restarts.

Alternatively, you can set these parameters on startup by using the sysctl tool, which is
used by many Linux distributions (SuSE has added it as well, beginning with SuSE Linux
8.0). Just put the following values into a file named ‘/etc/sysctl.conf’”

Increase some values for MySQL
fs.file-max = 65536
fs.dquot-max = 8192
fs.super-max = 1024

You should also add the following to ‘/etc/my.cnf’:

[mysqld_safe]

open-files-1imit=8192
This should allow the server a limit of 8,192 for the combined number of connections and
open files.

The STACK_SIZE constant in LinuxThreads controls the spacing of thread stacks in the
address space. It needs to be large enough so that there will be plenty of room for each
individual thread stack, but small enough to keep the stack of some threads from running
into the global mysqld data. Unfortunately, as we have experimentally discovered, the
Linux implementation of mmap () will successfully unmap an already mapped region if you
ask it to map out an address already in use, zeroing out the data on the entire page instead
of returning an error. So, the safety of mysqld or any other threaded application depends
on “gentlemanly” behavior of the code that creates threads. The user must take measures
to make sure that the number of running threads at any time is sufficiently low for thread
stacks to stay away from the global heap. With mysqld, you should enforce this behavior
by setting a reasonable value for the max_connections variable.

If you build MySQL yourself, you can patch LinuxThreads for better stack use. See Sec-
tion 2.6.1.3 [Source notes-Linux]|, page 149. If you do not want to patch LinuxThreads,
you should set max_connections to a value no higher than 500. It should be even less
if you have a large key buffer, large heap tables, or some other things that make mysqld
allocate a lot of memory, or if you are running a 2.2 kernel with a 2GB patch. If you are
using our binary or RPM version 3.23.25 or later, you can safely set max_connections at
1500, assuming no large key buffer or heap tables with lots of data. The more you reduce
STACK_SIZE in LinuxThreads the more threads you can safely create. We recommend values
between 128KB and 256KB.

If you use a lot of concurrent connections, you may suffer from a “feature” in the 2.2 kernel
that attempts to prevent fork bomb attacks by penalizing a process for forking or cloning a
child. This causes MySQL not to scale well as you increase the number of concurrent clients.
On single-CPU systems, we have seen this manifested as very slow thread creation: It may
take a long time to connect to MySQL (as long as one minute), and it may take just as long to
shut it down. On multiple-CPU systems, we have observed a gradual drop in query speed as
the number of clients increases. In the process of trying to find a solution, we have received
a kernel patch from one of our users who claimed it made a lot of difference for his site. The
patch is available at http://www.mysql.com/Downloads/Patches/linux-fork.patch. We
have now done rather extensive testing of this patch on both development and production

Chapter 2: Installing MySQL 153

systems. It has significantly improved MySQL performance without causing any problems
and we now recommend it to our users who still run high-load servers on 2.2 kernels.

This issue has been fixed in the 2.4 kernel, so if you are not satisfied with the current
performance of your system, rather than patching your 2.2 kernel, it might be easier to
upgrade to 2.4. On SMP systems, upgrading also will give you a nice SMP boost in addition
to fixing the fairness bug.

We have tested MySQL on the 2.4 kernel on a two-CPU machine and found MySQL scales
much better. There was virtually no slowdown on query throughput all the way up to 1,000
clients, and the MySQL scaling factor (computed as the ratio of maximum throughput to
the throughput for one client) was 180%. We have observed similar results on a four-CPU
system: Virtually no slowdown as the number of clients was increased up to 1,000, and a
300% scaling factor. Based on these results, for a high-load SMP server using a 2.2 kernel,
we definitely recommend upgrading to the 2.4 kernel at this point.

We have discovered that it is essential to run the mysqld process with the highest possible
priority on the 2.4 kernel to achieve maximum performance. This can be done by adding a
renice -20 $$ command to mysqld_safe. In our testing on a four-CPU machine, increasing
the priority resulted in a 60% throughput increase with 400 clients.

We are currently also trying to collect more information on how well MySQL performs with
a 2.4 kernel on four-way and eight-way systems. If you have access such a system and have
done some benchmarks, please send an email message to benchmarks@mysql.com with the
results. We will review them for inclusion in the manual.

If you see a dead mysqld server process with ps, this usually means that you have found a
bug in MySQL or you have a corrupted table. See Section A.4.2 [Crashing], page 1080.

To get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld
with the ——core-file option. Note that you also probably need to raise the core file size by
adding ulimit -c 1000000 to mysqld_safe or starting mysqld_safe with --core-file-
$ize=1000000. See Section 5.1.3 [mysqld_safe|, page 232.

2.6.1.5 Linux x86 Notes

MySQL requires libc Version 5.4.12 or newer. It’s known to work with 1ibc 5.4.46. glibc
Version 2.0.6 and later should also work. There have been some problems with the glibc
RPMs from Red Hat, so if you have problems, check whether there are any updates. The
glibc 2.0.7-19 and 2.0.7-29 RPMs are known to work.

If you are using Red Hat 8.0 or a new glibc 2.2.x library, you may see mysqld die in
gethostbyaddr (). This happens because the new glibc library requires a stack size greater
than 128KB for this call. To fix the problem, start mysqld with the --thread-stack=192K
option. (Use -0 thread_stack=192K before MySQL 4.) This stack size is now the default
on MySQL 4.0.10 and above, so you should not see the problem.

If you are using gcc 3.0 and above to compile MySQL, you must install the 1ibstdc++v3
library before compiling MySQL; if you don’t do this, you will get an error about a missing
__cxa_pure_virtual symbol during linking.

On some older Linux distributions, configure may produce an error like this:

Syntax error in sched.h. Change _P to __P in the

154 MySQL Technical Reference for Version 5.0.0-alpha

/usr/include/sched.h file.
See the Installation chapter in the Reference Manual.

Just do what the error message says. Add an extra underscore to the _P macro name that
has only one underscore, then try again.

You may get some warnings when compiling. Those shown here can be ignored:

mysqld.cc -o objs-thread/mysqld.o

mysqld.cc: In function ‘void init_signals()’:

mysqld.cc:315: warning: assignment of negative value ‘-1’ to
‘long unsigned int’

mysqld.cc: In function ‘void * signal_hand(void *)’:
mysqld.cc:346: warning: assignment of negative value ‘-1’ to
‘long unsigned int’

If mysqld always dumps core when it starts, the problem may be that you have an old
‘/1ib/1libc.a’. Try renaming it, then remove ‘sql/mysqld’ and do a new make install
and try again. This problem has been reported on some Slackware installations.
If you get the following error when linking mysqld, it means that your ‘libg++.a’ is not
installed correctly:

/usr/lib/libc.a(putc.o): In function ¢_IO_putc’:

putc.o(.text+0x0): multiple definition of ‘_IO_putc’

You can avoid using ‘1ibg++.a’ by running configure like this:
shell> CXX=gcc ./configure

If mysqld crashes immediately and you are running Red Hat Version 5.0 with a version of
glibc older than 2.0.7-5, you should make sure that you have installed all glibc patches.
There is a lot of information about this in the MySQL mail archives, available online at
http://lists.mysql.com/.

2.6.1.6 Linux SPARC Notes

In some implementations, readdir_r() is broken. The symptom is that the SHOW
DATABASES statement always returns an empty set. This can be fixed by removing
HAVE_READDIR_R from ‘config.h’ after configuring and before compiling.

2.6.1.7 Linux Alpha Notes

MySQL 3.23.12 is the first MySQL version that is tested on Linux-Alpha. If you plan to
use MySQL on Linux-Alpha, you should ensure that you have this version or newer.

We have tested MySQL on Alpha with our benchmarks and test suite, and it appears to
work nicely.

We currently build the MySQL binary packages on SuSE Linux 7.0 for AXP, kernel 2.4.4-
SMP, Compaq C compiler (V6.2-505) and Compaq C++ compiler (V6.3-006) on a Compaq
DS20 machine with an Alpha EV6 processor.

You can find the preceding compilers at http://www.support.compaq.com/alpha-tools/.
By using these compilers rather than gcc, we get about 9-14% better MySQL performance.

Chapter 2: Installing MySQL 155

Note that until MySQL version 3.23.52 and 4.0.2, we optimized the binary for the current
CPU only (by using the -fast compile option). This means that for older versions, you
can use our Alpha binaries only if you have an Alpha EV6 processor.

For all following releases, we added the —arch generic flag to our compile options, which
makes sure that the binary runs on all Alpha processors. We also compile statically to avoid
library problems. The configure command looks like this:

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx \
CXXFLAGS="-fast -arch generic -noexceptions -nortti" \
./configure --prefix=/usr/local/mysql --disable-shared \
--with-extra-charsets=complex --enable-thread-safe-client \
--with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared
If you want to use egcs, the following configure line worked for us:
CFLAGS="-03 -fomit-frame-pointer" CXX=gcc \
CXXFLAGS="-03 -fomit-frame-pointer -felide-constructors \
-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --disable-shared
Some known problems when running MySQL on Linux-Alpha:

e Debugging threaded applications like MySQL will not work with gdb 4.18. You should
use gdb 5.1 instead.

e If you try linking mysqld statically when using gcc, the resulting image will dump core
at startup time. In other words, do not use --with-mysqld-ldflags=-all-static
with gce.

2.6.1.8 Linux PowerPC Notes

MySQL should work on MkLinux with the newest glibc package (tested with glibc 2.0.7).

2.6.1.9 Linux MIPS Notes

To get MySQL to work on Qube2 (Linux Mips), you need the newest glibc libraries
glibc-2.0.7-29C2 is known to work. You must also use the egcs C++ compiler (egcs
1.0.2-9, gcc 2.95.2 or newer).

2.6.1.10 Linux IA-64 Notes

To get MySQL to compile on Linux 1A-64, we use the following configure command for
building with gcc 2.96:
CC=gcc \
CFLAGS="-03 -fno-omit-frame-pointer" \
CXX=gcc \
CXXFLAGS="-03 -fno-omit-frame-pointer -felide-constructors \
-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
"--with-comment=0fficial MySQL binary" \

156 MySQL Technical Reference for Version 5.0.0-alpha

--with-extra-charsets=complex

On TA-64, the MySQL client binaries use shared libraries. This means that if you in-
stall our binary distribution at a location other than ‘/usr/local/mysql’, you need to
add the path of the directory where you have ‘libmysqlclient.so’ installed either to the
‘/etc/1d.so.conf’ file or to the value of your LD_LIBRARY_PATH environment variable.

See Section A.3.1 [Link errors], page 1076.

2.6.2 Mac OS X Notes

On Mac OS X, tar cannot handle long filenames. If you need to unpack a ‘.tar.gz’
distribution, use gnutar instead.

2.6.2.1 Mac OS X 10.x (Darwin)

MySQL should work without any problems on Mac OS X 10.x (Darwin).
Our binary for Mac OS X is compiled on Darwin 6.3 with the following configure line:
CC=gcc CFLAGS="-03 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-03 -fno-omit-frame-pointer -felide-constructors \
-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --disable-shared

See Section 2.2.3 [Mac OS X installation], page 92.

2.6.2.2 Mac OS X Server 1.2 (Rhapsody)

For current versions of Mac OS X Server, no operating system changes are necessary before
compiling MySQL. Compiling for the Server platform is the same as for the client version
of Mac OS X. (However, note that MySQL comes preinstalled on Mac OS X Server, so you
need not build it yourself.)

For older versions (Mac OS X Server 1.2, a.k.a. Rhapsody), you must first install a pthread
package before trying to configure MySQL.
See Section 2.2.3 [Mac OS X installation], page 92.

2.6.3 Solaris Notes

On Solaris, you may run into trouble even before you get the MySQL distribution unpacked!
Solaris tar can’t handle long filenames, so you may see an error like this when you unpack
MySQL:
x mysql-3.22.12-beta/bench/Results/ATIS-mysql_odbc-NT_4.0-cmp-db2,
informix,ms-sql,mysql,oracle,solid,sybase, O bytes, O tape blocks
tar: directory checksum error
In this case, you must use GNU tar (gtar) to unpack the distribution. You can find a
precompiled copy for Solaris at http://dev.mysql.com/downloads/os-solaris.html.

Chapter 2: Installing MySQL 157

Sun native threads work only on Solaris 2.5 and higher. For Version 2.4 and earlier, MySQL
automatically uses MIT-pthreads. See Section 2.3.5 [MIT-pthreads], page 112.
If you get the following error from configure, it means that you have something wrong
with your compiler installation:
checking for restartable system calls... configure: error can not
run test programs while cross compiling
In this case, you should upgrade your compiler to a newer version. You may also be able
to solve this problem by inserting the following row into the ‘config.cache’ file:
ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls=’no’}
If you are using Solaris on a SPARC, the recommended compiler is gcc 2.95.2 or 3.2. You

can find this at http://gcc.gnu.org/. Note that egcs 1.1.1 and gcc 2.8.1 don’t work
reliably on SPARC!
The recommended configure line when using gcc 2.95.2 is:
CC=gcc CFLAGS="-03" \
CXX=gcc CXXFLAGS="-03 -felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory \
--enable-assembler
If you have an UltraSPARC system, you can get 4% better performance by adding -mcpu=v8
-Wa,-xarch=v8plusa to the CFLAGS and CXXFLAGS environment variables.
If you have Sun’s Forte 5.0 (or newer) compiler, you can run configure like this:
CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt" \
CXX=CC CXXFLAGS="-noex -mt" \
./configure --prefix=/usr/local/mysql --enable-assembler
To create a 64-bit binary with Sun’s Forte compiler, use the following configuration options:
CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt -xarch=v9" \
CXX=CC CXXFLAGS="-noex -mt -xarch=v9" ASFLAGS="-xarch=v9" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit Solaris binary using gcc, add -m64 to CFLAGS and CXXFLAGS and remove
-—enable-assembler from the configure line. This works only with MySQL 4.0 and up;
MySQL 3.23 does not include the required modifications to support this.

In the MySQL benchmarks, we got a 4% speedup on an UltraSPARC when using Forte 5.0
in 32-bit mode compared to using gcc 3.2 with the -mcpu flag.

If you create a 64-bit mysqld binary, it is 4% slower than the 32-bit binary, but can handle
more threads and memory.

If you get a problem with fdatasync or sched_yield, you can fix this by adding LIBS=-1rt
to the configure line

For compilers older than WorkShop 5.3, you might have to edit the configure script.
Change this line:

#if !defined(__STDC__) || __STDC__ != 1
To this:
#if 'defined(__STDC__)
If you turn on __STDC__ with the -Xc option, the Sun compiler can’t compile with the

Solaris ‘pthread.h’ header file. This is a Sun bug (broken compiler or broken include file).

158 MySQL Technical Reference for Version 5.0.0-alpha

If mysqld issues the following error message when you run it, you have tried to compile
MySQL with the Sun compiler without enabling the -mt multi-thread option:

libc internal error: _rmutex_unlock: rmutex not held
Add -mt to CFLAGS and CXXFLAGS and recompile.
If you are using the SFW version of gcc (which comes with Solaris 8), you must add
‘/opt/sfw/1ib’ to the environment variable LD_LIBRARY_PATH before running configure.

If you are using the gcc available from sunfreeware.com, you may have many problems.
To avoid this, you should recompile gcc and GNU binutils on the machine where you will
be running them.
If you get the following error when compiling MySQL with gcc, it means that your gcc is
not configured for your version of Solaris:

shell> gcc -03 -g -02 -DDBUG_OFF -o thr_alarm ...

./thr_alarm.c: In function ‘signal_hand’:

./thr_alarm.c:556: too many arguments to function ‘sigwait’
The proper thing to do in this case is to get the newest version of gcc and compile it with
your current gcc compiler. At least for Solaris 2.5, almost all binary versions of gcc have
old, unusable include files that will break all programs that use threads, and possibly other
programs!

Solaris doesn’t provide static versions of all system libraries (1ibpthreads and 1ibdl), so
you can’t compile MySQL with --static. If you try to do so, you will get one of the
following errors:

1d: fatal: library -1dl: not found
undefined reference to ‘dlopen’
cannot find -1rt

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:
e Link clients with the -W1,r/full/path/to/libmysqlclient.so flag rather than with
-Lpath).
e Copy libmysqclient.so to ‘/usr/1lib’.
e Add the pathname of the directory where ‘libmysqlclient.so’ is located to the LD_
RUN_PATH environment variable before running your client.
If you have problems with configure trying to link with -1z when you don’t have zlib
installed, you have two options:

e If you want to be able to use the compressed communication protocol, you need to get
and install z1ib from ftp.gnu.org.

e Run configure with the ——with-named-z-1ibs=no option when building MySQL.
If you are using gcc and have problems with loading user-defined functions (UDFs) into
MySQL, try adding -1gcc to the link line for the UDF.

If you would like MySQL to start automatically, you can copy ‘support-files/mysql.server’]
to ‘/etc/init.d’ and create a symbolic link to it named ‘/etc/rc3.d/S99mysql.server’.

Chapter 2: Installing MySQL 159

If too many processes try to connect very rapidly to mysqld, you will see this error in the
MySQL log:
Error in accept: Protocol error

You might try starting the server with the —-back_log=50 option as a workaround for this.
(Use -0 back_log=50 before MySQL 4.)

Solaris doesn’t support core files for setuid () applications, so you can’t get a core file from
mysqld if you are using the ——user option.

2.6.3.1 Solaris 2.7/2.8 Notes

Normally, you can use a Solaris 2.6 binary on Solaris 2.7 and 2.8. Most of the Solaris 2.6
issues also apply for Solaris 2.7 and 2.8.

MySQL 3.23.4 and above should be able to detect new versions of Solaris automatically and
enable workarounds for the following problems.

Solaris 2.7 / 2.8 has some bugs in the include files. You may see the following error when
you use gcc:

/usr/include/widec.h:42: warning: ‘getwc’ redefined
/usr/include/wchar.h:326: warning: this is the location of the previous
definition
If this occurs, you can fix the problem by copying /usr/include/widec.hto .../lib/gcc-
lib/os/gcc-version/include and changing line 41 from this:

#if !defined(lint) && 'defined(__lint)
To this:
#if ldefined(lint) && 'defined(__lint) && !'defined(getwc)

Alternatively, you can edit ‘/usr/include/widec.h’ directly. Either way, after you make
the fix, you should remove ‘config.cache’ and run configure again.

If you get the following errors when you run make, it’s because configure didn’t detect the
‘curses.h’ file (probably because of the error in ‘/usr/include/widec.h’):

In file included from mysql.cc:50:
«

/usr/include/term.h:1060: syntax error before °,

/usr/include/term.h:1081: syntax error before ¢;’

The solution to this problem is to do one of the following;:
e Configure with CFLAGS=-DHAVE_CURSES_H CXXFLAGS=-DHAVE_CURSES_H ./configure.

e Edit ‘/usr/include/widec.h’ as indicated in the preceding discussion and re-run
configure.

e Remove the #define HAVE_TERM line from the ‘config.h’ file and run make again.
If your linker can’t find -1z when linking client programs, the problem is probably that

your ‘1libz.so’ file is installed in ‘/usr/local/1lib’. You can fix this problem by one of the
following methods:

e Add ‘/usr/local/lib’ to LD_LIBRARY_PATH.
e Add a link to ‘1libz.so’ from ‘/1ib’.

160 MySQL Technical Reference for Version 5.0.0-alpha

e If you are using Solaris 8, you can install the optional z1ib from your Solaris 8 CD
distribution.

e Run configure with the ——with-named-z-1ibs=no option when building MySQL.

2.6.3.2 Solaris x86 Notes

On Solaris 8 on x86, mysqgld will dump core if you remove the debug symbols using strip.

If you are using gcc or egcs on Solaris x86 and you experience problems with core dumps
under load, you should use the following configure command:

CC=gcc CFLAGS="-03 -fomit-frame-pointer -DHAVE_CURSES_H" \

CXX=gcc \

CXXFLAGS="-03 -fomit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti -DHAVE_CURSES_H" \

./configure --prefix=/usr/local/mysql
This will avoid problems with the 1ibstdc++ library and with C++ exceptions.
If this doesn’t help, you should compile a debug version and run it with a trace file or under
gdb. See Section D.1.3 [Using gdb on mysqld], page 1280.

2.6.4 BSD Notes

This section provides information about using MySQL on variants of BSD Unix.

2.6.4.1 FreeBSD Notes

FreeBSD 4.x or newer is recommended for running MySQL, because the thread package is
much more integrated. To get a secure and stable system, you should use only FreeBSD
kernels that are marked -RELEASE.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-
client ports available at http://www.freebsd.org/. Using these ports gives you the
following benefits:

e A working MySQL with all optimizations enabled that are known to work on your

version of FreeBSD.

e Automatic configuration and build.

e Startup scripts installed in ‘/usr/local/etc/rc.d’.

e The ability to use pkg_info -L to see which files are installed.

e The ability to use pkg_delete to remove MySQL if you no longer want it on your
machine.

It is recommended you use MIT-pthreads on FreeBSD 2.x, and native threads on Versions
3 and up. It is possible to run with native threads on some late 2.2.x versions, but you may
encounter problems shutting down mysqld.

Unfortunately, certain function calls on FreeBSD are not yet fully thread-safe. Most notably,
this includes the gethostbyname () function, which is used by MySQL to convert hostnames
into IP addresses. Under certain circumstances, the mysqld process will suddenly cause

Chapter 2: Installing MySQL 161

100% CPU load and will be unresponsive. If you encounter this problem, try to start
MySQL using the --skip-name-resolve option.

Alternatively, you can link MySQL on FreeBSD 4.x against the LinuxThreads
library, which avoids a few of the problems that the native FreeBSD thread
implementation has. For a very good comparison of LinuxThreads versus native
threads, see Jeremy Zawodny’s article FreeBSD or Linux for your MySQL Server? at
http://jeremy.zawodny.com/blog/archives/000697 .html.

A known problem when using LinuxThreads on FreeBSD is that the wait_timeout value
is not honored (probably a signal handling problem in FreeBSD/LinuxThreads). This is
supposed to be fixed in FreeBSD 5.0. The symptom is that persistent connections can hang
for a very long time without getting closed down.

The MySQL build process requires GNU make (gmake) to work. If GNU make is not
available, you must install it first before compiling MySQL.
The recommended way to compile and install MySQL on FreeBSD with gcc (2.95.2 and
up) is:
CC=gcc CFLAGS="-02 -fno-strength-reduce" \
CXX=gcc CXXFLAGS="-02 -fno-rtti -fno-exceptions \
-felide-constructors -fno-strength-reduce" \
./configure --prefix=/usr/local/mysql --enable-assembler
gmake
gmake install
cd /usr/local/mysql
bin/mysql_install_db --user=mysql
bin/mysqld_safe &

If you notice that configure will use MIT-pthreads, you should read the MIT-pthreads
notes. See Section 2.3.5 [MIT-pthreads], page 112.

If you get an error from make install that it can’t find ‘/usr/include/pthreads’,
configure didn’t detect that you need MIT-pthreads. To fix this problem, remove
‘config.cache’, then re-run configure with the -—with-mit-threads option.

Be sure that your name resolver setup is correct. Otherwise, you may experience resolver
delays or failures when connecting to mysqld. Also make sure that the localhost entry in
the ‘/etc/hosts’ file is correct. The file should start with a line similar to this:

127.0.0.1 localhost localhost.your.domain

FreeBSD is known to have a very low default file handle limit. See Section A.2.17 [Not
enough file handles|, page 1075. Start the server by using the —-open-files-limit option
for mysqld_safe, or raise the limits for the mysqld user in ‘/etc/login.conf’ and rebuild
it with cap_mkdb /etc/login.conf. Also be sure that you set the appropriate class for this
user in the password file if you are not using the default (use chpass mysqld-user-name).
See Section 5.1.3 [mysqld_safe], page 232.

If you have a lot of memory, you should consider rebuilding the kernel to allow MySQL to
use more than 512MB of RAM. Take a look at option MAXDSIZ in the LINT config file for
more information.

If you get problems with the current date in MySQL, setting the TZ variable will probably
help. See Appendix E [Environment variables|, page 1288.

162 MySQL Technical Reference for Version 5.0.0-alpha

2.6.4.2 NetBSD Notes

To compile on NetBSD, you need GNU make. Otherwise, the build process will fail when
make tries to run lint on C++ files.

2.6.4.3 OpenBSD 2.5 Notes

On OpenBSD Version 2.5, you can compile MySQL with native threads with the following
options:
CFLAGS=-pthread CXXFLAGS=-pthread ./configure --with-mit-threads=no

2.6.4.4 OpenBSD 2.8 Notes

Our users have reported that OpenBSD 2.8 has a threading bug that causes problems with
MySQL. The OpenBSD Developers have fixed the problem, but as of January 25, 2001,
it’s only available in the “-current” branch. The symptoms of this threading bug are slow
response, high load, high CPU usage, and crashes.

If you get an error like Error in accept:: Bad file descriptor or error 9 when trying to
open tables or directories, the problem is probably that you have not allocated enough file
descriptors for MySQL.

In this case, try starting mysqld_safe as root with the following options:

mysqld_safe --user=mysql --open-files-1imit=2048 &
2.6.4.5 BSD/OS Version 2.x Notes

If you get the following error when compiling MySQL, your ulimit value for virtual memory
is too low:

item_func.h: In method

‘Item_func_ge::Item_func_ge(const Item_func_ge &)’:

item_func.h:28: virtual memory exhausted

make[2]: ***x [item_func.o] Error 1

Try using ulimit -v 80000 and run make again. If this doesn’t work and you are using
bash, try switching to csh or sh; some BSDI users have reported problems with bash and
ulimit.

If you are using gcc, you may also use have to use the --with-low-memory flag for
configure to be able to compile ‘sql_yacc.cc’.

If you get problems with the current date in MySQL, setting the TZ variable will probably
help. See Appendix E [Environment variables|, page 1288.

2.6.4.6 BSD/OS Version 3.x Notes

Upgrade to BSD/OS Version 3.1. If that is not possible, install BSDIpatch M300-038.
Use the following command when configuring MySQL:

Chapter 2: Installing MySQL 163

env CXX=shlicc++ CC=shlicc2 \

./configure \
—--prefix=/usr/local/mysql \
--localstatedir=/var/mysql \
--without-perl \
--with-unix-socket-path=/var/mysql/mysql.sock

The following is also known to work:

env CC=gcc CXX=gcc CXXFLAGS=-03 \

./configure \
--prefix=/usr/local/mysql \
--with-unix-socket-path=/var/mysql/mysql.sock

You can change the directory locations if you wish, or just use the defaults by not specifying
any locations.

If you have problems with performance under heavy load, try using the --skip-thread-
priority option to mysqld! This will run all threads with the same priority. On BSDI
Version 3.1, this gives better performance, at least until BSDI fixes its thread scheduler.

If you get the error virtual memory exhausted while compiling, you should try using
ulimit -v 80000 and running make again. If this doesn’t work and you are using bash, try
switching to csh or sh; some BSDI users have reported problems with bash and ulimit.

2.6.4.7 BSD/OS Version 4.x Notes

BSDI Version 4.x has some thread-related bugs. If you want to use MySQL on this, you
should install all thread-related patches. At least M400-023 should be installed.

On some BSDI Version 4.x systems, you may get problems with shared libraries. The
symptom is that you can’t execute any client programs, for example, mysqladmin. In this
case, you need to reconfigure not to use shared libraries with the -—disable-shared option
to configure.

Some customers have had problems on BSDI 4.0.1 that the mysqld binary after a while
can’t open tables. This is because some library /system-related bug causes mysqld to change
current directory without having asked for that to happen.

The fix is to either upgrade MySQL to at least version 3.23.34 or, after running configure,
remove the line #define HAVE_REALPATH from config.h before running make.

Note that this means that you can’t symbolically link a database directories to another
database directory or symbolic link a table to another database on BSDI. (Making a sym-
bolic link to another disk is okay).

2.6.5 Other Unix Notes

2.6.5.1 HP-UX Version 10.20 Notes

There are a couple of small problems when compiling MySQL on HP-UX. We recommend
that you use gcc instead of the HP-UX native compiler, because gcc produces better code.

164 MySQL Technical Reference for Version 5.0.0-alpha

We recommend using gcc 2.95 on HP-UX. Don’t use high optimization flags (such as -06)
because they may not be safe on HP-UX.
The following configure line should work with gcc 2.95:
CFLAGS="-I/opt/dce/include -fpic" \
CXXFLAGS="-I/opt/dce/include -felide-constructors -fno-exceptions \
—-fno-rtti" \
CXX=gcc \
./configure --with-pthread \
--with-named-thread-1libs=’-1dce’ \
—--prefix=/usr/local/mysql --disable-shared

The following configure line should work with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -03 -fPIC" CXX=gcc \

CXXFLAGS="-DHPUX -I/opt/dce/include -felide-constructors \
-fno-exceptions -fno-rtti -03 -fPIC" \

./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --with-pthread \
--with-named-thread-libs=-1ldce --with-lib-ccflags=-fPIC
--disable-shared

2.6.5.2 HP-UX Version 11.x Notes

For HP-UX Version 11.x, we recommend MySQL 3.23.15 or later.

Because of some critical bugs in the standard HP-UX libraries, you should install the fol-
lowing patches before trying to run MySQL on HP-UX 11.0:

PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative

This will solve the problem of getting EWOULDBLOCK from recv() and EBADF from accept ()
in threaded applications.

If you are using gcc 2.95.1 on an unpatched HP-UX 11.x system, you will get the error:

In file included from /usr/include/unistd.h:11,
from ../include/global.h:125,
from mysql_priv.h:15,
from item.cc:19:
/usr/include/sys/unistd.h:184: declaration of C function ...
/usr/include/sys/pthread.h:440: previous declaration ...
In file included from item.h:306,
from mysql_priv.h:158,
from item.cc:19:
The problem is that HP-UX doesn’t define pthreads_atfork() consis-
tently. It has conflicting prototypes in ‘/usr/include/sys/unistd.h’:184 and
‘/usr/include/sys/pthread.h’:440.

One solution is to copy ‘/usr/include/sys/unistd.h’ into ‘mysql/include’ and edit
‘unistd.h’ and change it to match the definition in ‘pthread.h’. Look for this line

Chapter 2: Installing MySQL 165

extern int pthread_atfork(void (*prepare) (), void (*parent) (),
void (*child)));

Change it to look like this:

extern int pthread_atfork(void (*prepare) (void), void (*parent) (void),
void (*child) (void));

After making the change, the following configure line should work:
CFLAGS="-fomit-frame-pointer -03 -fpic" CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti -03" \
./configure --prefix=/usr/local/mysql --disable-shared

If you are using MySQL 4.0.5 with the HP-UX compiler, you can use the following command
(which has been tested with cc B.11.11.04):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure \
--with-extra-character-set=complex

You can ignore any errors of the following type:

aCC: warning 901: unknown option: ‘-3’: use +help for online
documentation

If you get the following error from configure, verify that you don’t have the path to the
K&R compiler before the path to the HP-UX C and C++ compiler:

checking for cc option to accept ANSI C... no
configure: error: MySQL requires an ANSI C compiler (and a C++ compiler).Jj
Try gcc. See the Installation chapter in the Reference Manual.

Another reason for not being able to compile is that you didn’t define the +DD64 flags as
just described.

Another possibility for HP-UX 11 is to use MySQL binaries for HP-UX 10.20. We have
received reports from some users that these binaries work fine on HP-UX 11.00. If you
encounter problems, be sure to check your HP-UX patch level.

2.6.5.3 IBM-AIX notes

Automatic detection of x1C is missing from Autoconf, so a number of variables need to be
set before running configure. The following example uses the IBM compiler:

export CC="xlc_r -ma -03 -gstrict -qoptimize=3 -gmaxmem=8192 "

export CXX="x1C_r -ma -03 -gstrict -qoptimize=3 -gmaxmem=8192"

export CFLAGS="-I /usr/local/include"

export LDFLAGS="-L /usr/local/lib"

export CPPFLAGS=$CFLAGS

export CXXFLAGS=$CFLAGS

./configure --prefix=/usr/local \
--localstatedir=/var/mysql \
--sysconfdir=/etc/mysql \
--sbindir=’/usr/local/bin’ \
--libexecdir=’/usr/local/bin’ \
--enable-thread-safe-client \

166 MySQL Technical Reference for Version 5.0.0-alpha

--enable-large-files

The preceding options are used to compile the MySQL distribution that can be found at
http://www-frec.bull.com/.

If you change the -03 to -02 in the preceding configure line, you must also remove the
-gstrict option. This is a limitation in the IBM C compiler.

If you are using gcc or egcs to compile MySQL, you must use the ~-fno-exceptions flag,
because the exception handling in gcc/eges is not thread-safe! (This is tested with egcs
1.1.) There are also some known problems with IBM’s assembler that may cause it to
generate bad code when used with gcc.

We recommend the following configure line with egcs and gcc 2.95 on AIX:

CC="gcc -pipe -mcpu=power -Wa,-many" \

CXX="gcc -pipe -mcpu=power -Wa,-many" \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory

The -Wa,-many option is necessary for the compile to be successful. IBM is aware of this
problem but is in no hurry to fix it because of the workaround that is available. We don’t
know if the -fno-exceptions is required with gcc 2.95, but because MySQL doesn’t use
exceptions and the option generates faster code, we recommend that you should always use
it with egcs / gce.

If you get a problem with assembler code, try changing the -mcpu=xxx option to match
your CPU. Typically power2, power, or powerpc may need to be used. Alternatively, you
might need to use 604 or 604e. We are not positive but suspect that power would likely be
safe most of the time, even on a power2 machine.

If you don’t know what your CPU is, execute a uname -m command. It will produce a
string that looks like 000514676700, with a format of xxyyyyyymmss where xx and ss are
always 00, yyyyyy is a unique system ID and mm is the ID of the CPU Planar. A chart of
these values can be found at http://publib.boulder.ibm.com/doc_link/en_US/a_doc_
lib/cmds/aixcmds5/uname.htm. This will give you a machine type and a machine model
you can use to determine what type of CPU you have.

If you have problems with signals (MySQL dies unexpectedly under high load), you may
have found an OS bug with threads and signals. In this case, you can tell MySQL not to
use signals by configuring as follows:

CFLAGS=-DDONT_USE_THR_ALARM CXX=gcc \

CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti \

-DDONT_USE_THR_ALARM" \

./configure --prefix=/usr/local/mysql --with-debug \

--with-low-memory

This doesn’t affect the performance of MySQL, but has the side effect that you can’t kill
clients that are “sleeping” on a connection with mysqladmin kill or mysqladmin shutdown.
Instead, the client will die when it issues its next command.

On some versions of AIX, linking with 1ibbind.a makes getservbyname() dump core.
This is an AIX bug and should be reported to IBM.

For AIX 4.2.1 and gcc, you have to make the following changes.

Chapter 2: Installing MySQL 167

After configuring, edit ‘config.h’ and ‘include/my_config.h’ and change the line that
says this:

#define HAVE_SNPRINTF 1
to this:
#undef HAVE_SNPRINTF
And finally, in ‘mysqld.cc’, you need to add a prototype for initgroups().

#ifdef _AIX41
extern "C" int initgroups(const char *,int);
#endif

If you need to allocate a lot of memory to the mysqld process, it’s not enough to just use
ulimit -d unlimited. You may also have to modify mysqld_safe to add a line something
like this:

export LDR_CNTRL=’MAXDATA=0x80000000’

You can find more information about using a lot of memory at http://publib16.boulder.ibm.com/pserie
US/aixprggd/genprogc/lrg_prg_support.htm.

2.6.5.4 SunOS 4 Notes

On SunOS 4, MIT-pthreads is needed to compile MySQL. This in turn means you will need
GNU make.

Some SunOS 4 systems have problems with dynamic libraries and 1libtool. You can use
the following configure line to avoid this problem:

./configure --disable-shared --with-mysqld-ldflags=-all-static
When compiling readline, you may get warnings about duplicate defines. These can be
ignored.

When compiling mysqld, there will be some implicit declaration of function warnings.
These can be ignored.

2.6.5.5 Alpha-DEC-UNIX Notes (Tru64)

If you are using egcs 1.1.2 on Digital Unix, you should upgrade to gcc 2.95.2, because egcs
on DEC has some serious bugs!

When compiling threaded programs under Digital Unix, the documentation recommends
using the -pthread option for cc and cxx and the -1mach -lexc libraries (in addition to
-1pthread). You should run configure something like this:

CC="cc -pthread" CXX="cxx -pthread -0" \
./configure --with-named-thread-libs="-1lpthread -lmach -lexc -1lc"

When compiling mysqld, you may see a couple of warnings like this:

mysqld.cc: In function void handle_connections()’:
mysqld.cc:626: passing long unsigned int *’ as argument 3 of
accept(int,sockadddr *, int %)’

You can safely ignore these warnings. They occur because configure can detect only errors,
not warnings.

168 MySQL Technical Reference for Version 5.0.0-alpha

If you start the server directly from the command line, you may have problems with it dying
when you log out. (When you log out, your outstanding processes receive a SIGHUP signal.)
If so, try starting the server like this:

nohup mysqld [options] &
nohup causes the command following it to ignore any SIGHUP signal sent from the terminal.
Alternatively, start the server by running mysqld_safe, which invokes mysqld using nohup
for you. See Section 5.1.3 [mysqld_safe|, page 232.

If you get a problem when compiling ‘mysys/get_opt.c’, just remove the #define _NO_
PROTO line from the start of that file.

If you are using Compaq’s CC compiler, the following configure line should work:

CC="cc -pthread"
CFLAGS="-04 -ansi_alias -ansi_args —-fast -inline speed all -arch host"
CXX="cxx -pthread"
CXXFLAGS="-04 -ansi_alias -ansi_args -fast -inline speed all \
-arch host -noexceptions -nortti"
export CC CFLAGS CXX CXXFLAGS
./configure \
—--prefix=/usr/local/mysql \
--with-low-memory \
--enable-large-files \
--enable-shared=yes \
--with-named-thread-libs="-1lpthread -lmach -lexc -1lc"
gnumake

If you get a problem with libtool when compiling with shared libraries as just shown,
when linking mysql, you should be able to get around this by issuing these commands:
cd mysql
/bin/sh ../libtool --mode=1link cxx -pthread -03 -DDBUG_OFF \
-04 -ansi_alias -ansi_args -fast -inline speed \
-speculate all \ -arch host -DUNDEF_HAVE_GETHOSTBYNAME_R \
-0 mysql mysql.o readline.o sql_string.o completion_hash.o \
../readline/libreadline.a -lcurses \
../1libmysql/.1libs/libmysqlclient.so -1m
cd ..
gnumake
gnumake install
scripts/mysql_install_db

2.6.5.6 Alpha-DEC-OSF/1 Notes

If you have problems compiling and have DEC CC and gcc installed, try running configure
like this:

CC=cc CFLAGS=-0 CXX=gcc CXXFLAGS=-03 \
./configure --prefix=/usr/local/mysql

If you get problems with the ‘c_asm.h’ file, you can create and use a ’dummy’ ‘c_asm.h’

file with:

Chapter 2: Installing MySQL 169

touch include/c_asm.h

CC=gcc CFLAGS=-I./include \

CXX=gcc CXXFLAGS=-03 \

./configure --prefix=/usr/local/mysql

Note that the following problems with the 1d program can be fixed by downloading the
latest DEC (Compaq) patch kit from: http://ftp.support.compaq.com/public/unix/.

On OSF/1 V4.0D and compiler "DEC C V5.6-071 on Digital Unix V4.0 (Rev. 878)," the
compiler had some strange behavior (undefined asm symbols). /bin/1d also appears to
be broken (problems with _exit undefined errors occurring while linking mysqld). On
this system, we have managed to compile MySQL with the following configure line, after
replacing /bin/1d with the version from OSF 4.0C:

CC=gcc CXX=gcc CXXFLAGS=-03 ./configure --prefix=/usr/local/mysql
With the Digital compiler "C++ V6.1-029," the following should work:

CC=cc -pthread
CFLAGS=-04 -ansi_alias -ansi_args -fast -inline speed \
-speculate all -arch host
CXX=cxx -pthread
CXXFLAGS=-04 -ansi_alias -ansi_args -fast -inline speed \
-speculate all -arch host -noexceptions -nortti

export CC CFLAGS CXX CXXFLAGS

./configure --prefix=/usr/mysql/mysql \
--with-mysqld-1ldflags=-all-static --disable-shared \
--with-named-thread-libs="-1lmach -lexc -1lc"

In some versions of OSF/1, the alloca() function is broken. Fix this by removing the line
in ‘config.h’ that defines *HAVE_ALLOCA’.

The alloca() function also may have an incorrect prototype in /usr/include/alloca.h.
This warning resulting from this can be ignored.

configure will use the following thread libraries automatically: --with-named-thread-
libs="-1pthread -1lmach -lexc -1c".

When using gcc, you can also try running configure like this:
CFLAGS=-D_PTHREAD_USE_D4 CXX=gcc CXXFLAGS=-03 ./configure ...

If you have problems with signals (MySQL dies unexpectedly under high load), you may
have found an OS bug with threads and signals. In this case, you can tell MySQL not to
use signals by configuring with:

CFLAGS=-DDONT_USE_THR_ALARM \
CXXFLAGS=-DDONT_USE_THR_ALARM \
./configure ...

This doesn’t affect the performance of MySQL, but has the side effect that you can’t kill
clients that are “sleeping” on a connection with mysqladmin kill or mysqladmin shutdown.
Instead, the client will die when it issues its next command.

With gce 2.95.2, you will probably run into the following compile error:

sql_acl.cc:1456: Internal compiler error in ‘scan_region’,
at except.c:2566

170 MySQL Technical Reference for Version 5.0.0-alpha

Please submit a full bug report.

To fix this, you should change to the sql directory and do a cut-and-paste of the last gcc
line, but change -03 to -00 (or add -00 immediately after gcc if you don’t have any -0
option on your compile line). After this is done, you can just change back to the top-level
directory and run make again.

2.6.5.7 SGI Irix Notes

If you are using Irix Version 6.5.3 or newer, mysqld will be able to create threads only if
you run it as a user that has CAP_SCHED_MGT privileges (such as root) or give the mysqld
server this privilege with the following shell command:

chcap "CAP_SCHED_MGT+epi" /opt/mysql/libexec/mysqld
You may have to undefine some symbols in ‘config.h’ after running configure and before
compiling.

In some Irix implementations, the alloca() function is broken. If the mysqld server dies
on some SELECT statements, remove the lines from ‘config.h’ that define HAVE_ALLOC and
HAVE_ALLOCA_H. If mysqladmin create doesn’t work, remove the line from ‘config.h’ that
defines HAVE_READDIR_R. You may have to remove the HAVE_TERM_H line as well.

SGI recommends that you install all the patches on this page as a set:
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

At the very minimum, you should install the latest kernel rollup, the latest r1d rollup, and
the latest 1ibc rollup.

You definitely need all the POSIX patches on this page, for pthreads support:
http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html
If you get the something like the following error when compiling ‘mysql.cc’:

"/usr/include/curses.h", line 82: error(1084):
invalid combination of type

Type the following in the top-level directory of your MySQL source tree:

extra/replace bool curses_bool < /usr/include/curses.h > include/curses.hj
make

There have also been reports of scheduling problems. If only one thread is running, per-
formance is slow. Avoid this by starting another client. This may lead to a two-to-tenfold
increase in execution speed thereafter for the other thread. This is a poorly understood
problem with Irix threads; you may have to improvise to find solutions until this can be
fixed.

If you are compiling with gcc, you can use the following configure command:

CC=gcc CXX=gcc CXXFLAGS=-03 \
./configure --prefix=/usr/local/mysql --enable-thread-safe-client \
--with-named-thread-libs=-1pthread

On Irix 6.5.11 with native Irix C and C++ compilers ver. 7.3.1.2, the following is reported
to work

Chapter 2: Installing MySQL 171

CC=cc CXX=CC CFLAGS=’-03 -n32 -TARG:platform=IP22 -I/usr/local/include \

-L/usr/local/lib’ CXXFLAGS=’-03 -n32 -TARG:platform=IP22 \

-I/usr/local/include -L/usr/local/lib’ \

./configure --prefix=/usr/local/mysql --with-innodb --with-berkeley-db \
--with-libwrap=/usr/local \
--with-named-curses-libs=/usr/local/lib/libncurses.a

2.6.5.8 SCO Notes

The current port is tested only on “sco3.2v5.0.5,” “sc03.2v5.0.6,” and “sco3.2v5.0.7” sys-
tems. There has also been a lot of progress on a port to “sco 3.2v4.2.” Open Server
5.0.8(Legend) will have native threads and allow files greater than 2GB. The current max-
imum file size is 2GB.

We have been able to compile MySQL with the following configure command on on
OpenServer with gcc 2.95.3.

CC=gcc CXX=gcc ./configure --prefix=/usr/local/mysql \
--enable-thread-safe-client --with-innodb \
--with-openssl --with-vio --with-extra-charsets=complex

gcc is available at ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj.

This development system requires the OpenServer Execution Enviroment Supplement
0ss646B on OpenServer 5.0.6 and 0ss656B and The OpenSource libraries found in
gwxlibs. All OpenSource tools are in the ‘opensrc’ directory. They are available at
ftp://ftp.sco.com/pub/openserver5/opensrc/.

We recommend using the latest production release of MySQL. Currently MySQL-4.0.x is
the latest production release. There were some problems with MySQL 4.0.17 and MySQL
4.0.18, but they have now been fixed.

SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for
OpenServer 5.0.[0-6] and ftp://ftp.sco.com/pub/openserverv5/507 for OpenServer
5.0.7.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer]]
for OpenServer 5.0.x.

The maximum file size on an OpenSever 5.0.x system is 2GB.

The total memory which could be allocated for streams buffers, clists and lock records
cannot exceed 60MB on OpenServer 5.0.x.

Streams buffers are allocated in units of 4096 byte pages, clists are 70 bytes each, and lock
records are 64 bytes each, so:

(NSTRPAGES * 4096) + (NCLIST * 70) + (MAX_FLCKREC * 64) <= 62914560

Follow this procedure to configure the Database Services option. If you are unsure whether
an application requires this, see the documentation provided with the application.
1. Log in as root.

2. Enable the SUDS driver by editing the ‘/etc/conf/sdevice.d/suds’ file. Change the
N in the second field to a Y.

172

3. Use mkdev aio or the Hardware/Kernel Manager to enable support for asynchronous
I/0 and relink the kernel. To allow users to lock down memory for use with this type of
I/0O, update the aiomemlock(F) file. This file should be updated to include the names
of users that can use AIO and the maximum amounts of memory they can lock down.

4. Many applications use setuid binaries so that you need to specify only a single user.
See the documentation provided with the application to see if this is the case for your

application.

After you complete this process, reboot the system to create a new kernel incorporating

these changes.

MySQL Technical Reference for Version 5.0.0-alpha

By default, the entries in ‘/etc/conf/cf.d/mtune’ are set as follows:

Value Default
NBUF 0
NHBUF 0
NMPBUF 0
MAX_INODE 0
MAX_FILE 0
CTBUFSIZE 128
MAX_PROC 0
MAX_REGION 0
NCLIST 170
MAXUP 100
NOFILES 110
NHINODE 128
NAUTQOUP 10
NGROUPS 8
BDFLUSHR 30
MAX_FLCKREC 0
PUTBUFSZ 8000
MAXSLICE 100
ULIMIT 4194303
* Streams Parameters
NSTREAM 64
NSTRPUSH 9
NMUXLINK 192
STRMSGSZ 16384
STRCTLSZ 1024
STRMAXBLK 524288
NSTRPAGES 500
STRSPLITFRAC 80
NLOG 3
NUMSP 64
NUMTIM 16
NUMTRW 16

* Semaphore Parameters

SEMMAP

10

Min
24
32
12
100
100

50
500
120
15
60
64

(@]

50
2000
25
2048

Max
450000
524288
512
64000
64000
256
16000
160000
16640
16000
11000
8192
60

128
300
16000
20000
100
4194303

32768
9

4096
524288
1024
524288
8000
100

3

256
8192
8192

8192

Chapter 2: Installing MySQL 173

SEMMNI 10 10 8192
SEMMNS 60 60 8192
SEMMNU 30 10 8192
SEMMSL 25 25 150
SEMOPM 10 10 1024
SEMUME 10 10 25
SEMVMX 32767 32767 32767
SEMAEM 16384 16384 16384
* Shared Memory Parameters

SHMMAX 524288 131072 2147483647
SHMMIN 1 1 1
SHMMNI 100 100 2000
FILE 0 100 64000
NMOUNT 0 4 256
NPROC 0 50 16000
NREGION 0 500 160000

We recommend setting these values as follows:
NOFILES should be 4096 or 2048.
MAXUP should be 2048.

To make changes to the kernel, cd to ‘/etc/conf/bin’ and use ./idtune name parameter
to make the changes. For example, to change SEMMS to 200, execute these commands as
root:

cd /etc/conf/bin
./idtune SEMMNS 200

We recommend tuning the system, but the proper parameter values to use depend on the
number of users accessing the application or database and size the of the database (that is,
the used buffer pool). The following will affect the following kernel parameters defined in
‘/etc/conf/cf.d/stune’:

SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These
parameters have influence on the MySQL database engine to create user buffer pools.

NOFILES and MAXUP should be at to at least 2048.
MAXPROC should be set to at least 3000/4000 (depends on number of users) or more.

Also is recommended to use following formula to count value for SEMMSL, SEMMNS and
SEMMNU:

SEMMSL = 13
The 13 is what has been found to be the best for both Progress and MySQL.
SEMMNS = SEMMSL * number of db servers to be run on the system.

Set SEMMNS to the value of SEMMSL multiplied by the number of db servers (maximum) that
you will be running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75%
of SEMMNS, but this is a conservative estimate.

174 MySQL Technical Reference for Version 5.0.0-alpha

You need to at least install the "SCO OpenServer Linker and Application Development
Libraries" or the OpenServer Development System to use gcc. You cannot just use the
GCC Dev system without installing one of these.

You should get the FSU Pthreads package and install it first. This can be found at
http://moss.csc.ncsu.edu/ "mueller/ftp/pub/PART/pthreads.tar.gz. You can also
get a precompiled package from ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz.|]

FSU Pthreads can be compiled with SCO Unix 4.2 with tcpip, or using OpenServer 3.0 or
Open Desktop 3.0 (OS 3.0 ODT 3.0) with the SCO Development System installed using a
good port of GCC 2.5.x. For ODT or OS 3.0, you will need a good port of GCC 2.5.x. There
are a lot of problems without a good port. The port for this product requires the SCO Unix
Development system. Without it, you are missing the libraries and the linker that is needed.
You will also need ‘SC0-3.2v4.2-includes.tar.gz’. This file contains the changes to the
SCO Development include files that are needed to get MySQL to build. You need to replace
the existing system include files with these modified header files. They can be obtained from
ftp://ftp.zenez.com/pub/zenez/prgms/SC0-3.2v4.2-includes. tar.gz.

To build FSU Pthreads on your system, all you should need to do is run GNU make. The
‘Makefile’ in FSU-threads-3.14.tar.gz is already set up to make FSU-threads.

You can run ./configure in the ‘threads/src’ directory and select the SCO OpenServer
option. This command copies ‘Makefile.SC05’ to ‘Makefile’. Then run make.

To install in the default ‘/usr/include’ directory, log in as root, then cd to the
‘thread/src’ directory and run make install.

Remember that you must use GNU make when making MySQL.

Note: If you don’t start mysqld_safe as root, you probably will get only the default 110
open files per process. mysqld will write a note about this in the log file.

With SCO 3.2V4.2, you should use FSU Pthreads version 3.14 or newer. The following
configure command should work:

CFLAGS="-D_XOPEN_XPG4" CXX=gcc CXXFLAGS="-D_XOPEN_XPG4" \

./configure \
—--prefix=/usr/local/mysql \
--with-named-thread-1libs="-1lgthreads -lsocket -lgen -lgthreads" \
--with-named-curses-libs="-1lcurses"

You may get some problems with some include files. In this case, you can find new SCO-
specific include files at ftp://ftp.zenez. com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.Jj

You should unpack this file in the ‘include’ directory of your MySQL source tree.
SCO development notes:

bullet MySQL should automatically detect FSU Pthreads and link mysqld with -1gthreads
-1socket -lgthreads.

bullet The SCO development libraries are re-entrant in FSU Pthreads. SCO claims that its
library functions are re-entrant, so they must be re-entrant with FSU Pthreads. FSU
Pthreads on OpenServer tries to use the SCO scheme to make re-entrant libraries.

bullet FSU Pthreads (at least the version at ftp::/ftp.zenez.com) comes linked with GNU
malloc. If you encounter problems with memory usage, make sure that ‘gmalloc.o’ is
included in ‘1ibgthreads.a’ and ‘libgthreads.so’.

Chapter 2: Installing MySQL 175

bullet

bullet

bullet

bullet

bullet

In FSU Pthreads, the following system calls are pthreads-aware: read(), write(),
getmsg(), connect (), accept(), select(), and wait().

The CSSA-2001-SCO.35.2 (the patch is listed in custom as erg711905-dscr_remap secu-
rity patch (version 2.0.0)) breaks FSU threads and makes mysqld unstable. You have
to remove this one if you want to run mysqld on an OpenServer 5.0.6 machine.

SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for
OpenServer 5.0.x.

SCO provides security fixes and 1ibsocket.so.2 at ftp://ftp.sco.com/pub/security/OpenServer}]
and ftp://ftp.sco.com/pub/security/sse for OpenServer 5.0.x.

Pre-OSR506 security fixes. Also, the telnetd fix at ftp://stage.caldera.com/pub/security/opens
or ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SC0.10/ as

both ‘libsocket.so.2’ and ‘libresolv.so.1l’ with instructions for installing on

pre-OSR506 systems.

It’s probably a good idea to install these patches before trying to compile/use MySQL.

Begining with Legend, OpenServer will have native threads and no 2GB file size limit.

2.6.5.9 SCO UnixWare Version 7.1.x Notes

We recommend using the latest production release of MySQL. Currently this is MySQL
4.0.x. Should you choose to use an older release of MySQL on UnixWare 7.1.x, you must
use a version of MySQL at least as recent as 3.22.13 to get fixes for some portability and
OS problems.

We have been able to compile MySQL with the following configure command on UnixWare
Version 7.1.x:

CC="cc" CFLAGS="-I/usr/local/include" \

CXX="CC" CXXFLAGS="-I/usr/local/include" \

./configure --prefix=/usr/local/mysql \
--enable-thread-safe-client --with-berkeley-db=./bdb \
--with-innodb --with-openssl --with-extra-charsets=complex

If you want to use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++ ./configure --prefix=/usr/local/mysql

SCO provides operating system patches at ftp://ftp.sco.com/pub/unixware?

for

UnixWare 7.1.1, ftp://ftp.sco.com/pub/unixware7/713/ for UnixWare

7.1.3, ftp://ftp.sco.com/pub/unixware7/714/ for UnixWare 7.1.4, and
ftp://ftp.sco.com/pub/openunix8 for OpenUNIX 8.0.0.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/0OpenUNIX]]
for OpenUNIX and ftp://ftp.sco.com/pub/security/UnixWare for UnixWare.

By default, the maximum file size on a UnixWare 7 system is 1GB. Many OS utilities have
a limitation of 2GB. The maximum possible file size on UnixWare 7 is 1TB with VXFS.

To enable large file support on UnixWare 7.1.x, run fsadm.

fsadm -Fvxfs -o largefiles /
fsadm / * Note
ulimit unlimited

176 MySQL Technical Reference for Version 5.0.0-alpha

cd /etc/conf/bin

./idtune SFSZLIM Ox7FFFFFFF ** Note
./idtune HFSZLIM Ox7FFFFFFF *x Note
./idbuild -B

H H H H

* This should report "largefiles".
*% Ox7FFFFFFF represents infinity for these values.

Reboot the system using shutdown.

By default, the entries in ‘/etc/conf/cf.d/mtune’ are set to:

Value Default Min Max

SVMMLIM 0x9000000 0x1000000 Ox7FFFFFFF
HVMMLIM 0x9000000 0x1000000 Ox7FFFFFFF
SSTKLIM 0x1000000 0x2000 Ox7FFFFFFF
HSTKLIM 0x1000000 0x2000 Ox7FFFFFFF

We recommend setting these values as follows:

SDATLIM Ox7FFFFFFF
HDATLIM Ox7FFFFFFF
SSTKLIM Ox7FFFFFFF
HSTKLIM Ox7FFFFFFF
SVMMLIM Ox7FFFFFFF
HVMMLIM Ox7FFFFFFF
SFNOLIM 2048

HFNOLIM 2048

We recommend tuning the system, but the proper parameter values to use depend on the
number of users accessing the application or database and size the of the database (that is,
the used buffer pool). The following will affect the following kernel parameters defined in
‘/etc/conf/cf.d/stune’:

SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These
parameters have influence on the MySQL database engine to create user buffer pools.

SFNOLIM and HFNOLIM should be at maximum 2048.
NPROC should be set to at least 3000/4000 (depends on number of users).

Also is recommended to use following formula to count value for SEMMSL, SEMMNS, and
SEMMNU:

SEMMSL = 13
13 is what has been found to be the best for both Progress and MySQL.
SEMMNS = SEMMSL * number of db servers to be run on the system.

Set SEMMNS to the value of SEMMSL multiplied by the number of db servers (maximum) that
you will be running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75%
of SEMMNS, but this is a conservative estimate.

Chapter 2: Installing MySQL 177

2.6.6 OS/2 Notes

MySQL uses quite a few open files. Because of this, you should add something like the
following to your ‘CONFIG.SYS’ file:

SET EMXOPT=-c -n -h1024
If you don’t do this, you will probably run into the following error:

File ’xxxx’ not found (Errcode: 24)
When using MySQL with OS/2 Warp 3, FixPack 29 or above is required. With OS/2 Warp
4, FixPack 4 or above is required. This is a requirement of the Pthreads library. MySQL

must be installed on a partition with a type that supports long filenames, such as HPFS,
FAT32, and so on.

The ‘INSTALL.CMD’ script must be run from OS/2’s own ‘CMD.EXE’ and may not work with
replacement shells such as ‘40S2.EXE’.

The ‘scripts/mysql-install-db’ script has been renamed. It is now called ‘install.cmd’
and is a REXX script, which will set up the default MySQL security settings and create
the WorkPlace Shell icons for MySQL.
Dynamic module support is compiled in but not fully tested. Dynamic modules should be
compiled using the Pthreads runtime library.

gcc -Zd1ll -Zmt -Zcrtdll=pthrdrtl -I../include -I../regex -I.. \

-o example udf_example.cc -L../lib -lmysqlclient udf_example.def

mv example.dll example.udf
Note: Due to limitations in OS/2, UDF module name stems must not exceed eight charac-
ters. Modules are stored in the ‘/mysql2/udf’ directory; the safe-mysqld.cmd script will
put this directory in the BEGINLIBPATH environment variable. When using UDF modules,
specified extensions are ignored—it is assumed to be ‘.udf’. For example, in Unix, the
shared module might be named ‘example.so’ and you would load a function from it like
this:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME ’example.so’;
In OS/2, the module would be named ‘example.udf’, but you would not specify the module
extension:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME ’example’;

2.6.7 BeOS Notes

We have in the past talked with some BeOS developers who have said that MySQL is 80%
ported to BeOS, but we haven’t heard from them in a while.

2.7 Perl Installation Notes

Perl support for MySQL is provided by means of the DBI/DBD client interface. The interface
requires Perl Version 5.6.0 or later. It will not work if you have an older version of Perl.

If you want to use transactions with Perl DBI, you need to have DBD: :mysql version 1.2216
or newer. Version 2.9003 or newer is recommended.

178 MySQL Technical Reference for Version 5.0.0-alpha

If you are using the MySQL 4.1 client library, you must use DBD: :mysql 2.9003 or newer.

As of MySQL 3.22.8, Perl support is no longer included with MySQL distributions. You
can obtain the necessary modules from http://search.cpan.org for Unix, or by using the
ActiveState ppm program on Windows. The following sections describe how to do this.

Perl support for MySQL must be installed if you want to run the MySQL benchmark scripts.
See Section 7.1.4 [MySQL Benchmarks], page 416.

2.7.1 Installing Perl on Unix

MySQL Perl support requires that you’'ve installed MySQL client programming support
(libraries and header files). Most installation methods install the necessary files. However,
if you installed MySQL from RPM files on Linux, be sure that you’ve installed the developer
RPM. The client programs are in the client RPM, but client programming support is in the
developer RPM.

If you want to install Perl support, the files you will need can be obtained from the CPAN
(Comprehensive Perl Archive Network) at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell

cpan> install DBI

cpan> install DBD: :mysql
The DBD: :mysql installation runs a number of tests. These tests require being able to
connect to the local MySQL server as the anonymous user with no password. If you have
removed anonymous accounts or assigned them passwords, the tests fail. You can use force
install DBD: :mysql to ignore the failed tests.

DBI requires the Data: :Dumper module. It may already be installed; if not, you should
install it before installing DBI.

It is also possible to download the module distributions in the form of compressed tar
archives and build the modules manually. For example, to unpack and build a DBI distri-
bution, use a procedure such as this:
1. Unpack the distribution into the current directory:
shell> gunzip < DBI-VERSION.tar.gz | tar xvf -
This command creates a directory named ‘DBI-VERSION’.
2. Change location into the top-level directory of the unpacked distribution:
shell> cd DBI-VERSION
3. Build the distribution and compile everything:
shell> perl Makefile.PL
shell> make

shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note
that when you run that command during the DBD: :mysql installation to exercise the inter-
face code, the MySQL server must be running or the test will fail.

Chapter 2: Installing MySQL 179

It is a good idea to rebuild and reinstall the DBD: :mysql distribution whenever you install a
new release of MySQL, particularly if you notice symptoms such as that all your DBI scripts
fail after you upgrade MySQL.

If you don’t have access rights to install Perl modules in the system directory or
if you want to install local Perl modules, the following reference may be useful:
http://servers.digitaldaze.com/extensions/perl/modules.html#modules

Look under the heading “Installing New Modules that Require Locally Installed Modules.”

2.7.2 Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveS-
tate Perl:

o Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/
and install it.

e Open a console window (a “DOS window”).

e If required, set the HTTP_proxy variable. For example, you might try:
set HTTP_proxy=my.proxy.com:3128

e Start the PPM program:
C:\> C:\perl\bin\ppm.pl

e If you have not already done so, install DBI:
ppm> install DBI

If this succeeds, run the following command:
install \
ftp://ftp.de.uu.net/pub/CPAN/authors/id/JWIED/DBD-mysql-1.2212.x86.ppdl}
This procedure should work at least with ActiveState Perl Version 5.6.

If you can’t get the procedure to work, you should instead install the MyODBC driver and
connect to the MySQL server through ODBC:

use DBI;
$dbh= DBI->connect ("DBI:0DBC:$dsn",$user, $password) ||
die "Got error $DBI::errstr when connecting to $dsn\n";

2.7.3 Problems Using the Perl DBI/DBD Interface

If Perl reports that it can’t find the ‘. ./mysql/mysql.so’ module, then the problem is
probably that Perl can’t locate the shared library ‘libmysqlclient.so’.
You should be able to fix this by one of the following methods:
e Compile the DBD: :mysql distribution with perl Makefile.PL -static -config rather
than perl Makefile.PL.
e Copy ‘libmysqlclient.so’ to the directory where your other shared libraries are lo-
cated (probably ‘/usr/1ib’ or ‘/1ib’).

e Modify the -L options used to compile DBD: :mysql to reflect the actual location of
‘libmysqlclient.so’.

180 MySQL Technical Reference for Version 5.0.0-alpha

e On Linux, you can add the pathname of the directory where ‘libmysqlclient.so’ is
located to the ‘/etc/1ld.so.conf’ file.

e Add the pathname of the directory where ‘libmysqlclient.so’ is located to the LD_
RUN_PATH environment variable. Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the
linker fails to find. For example, if the linker cannot find 1ibc because it is in ‘/1ib’ and
the link command specifies -L/usr/1ib, change the -L option to -L/1ib or add -L/1ib to
the existing link command.

If you get the following errors from DBD: :mysql, you are probably using gcc (or using an
old binary compiled with gcc):
/usr/bin/perl: can’t resolve symbol ’__moddi3’

/usr/bin/perl: can’t resolve symbol ’__divdi3’

Add -L/usr/lib/gcc-1ib/... -1lgcc to the link command when the ‘mysql.so’ library
gets built (check the output from make for ‘mysql.so’ when you compile the Perl client).
The -L option should specify the pathname of the directory where ‘1ibgcc.a’ is located on
your system.

Another cause of this problem may be that Perl and MySQL aren’t both compiled with
gcce. In this case, you can solve the mismatch by compiling both with gcc.
You may see the following error from DBD: :mysql when you run the tests:
t/00base............ install_driver (mysql) failed:
Can’t load ’../blib/arch/auto/DBD/mysql/mysql.so’ for module DBD: :mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-1inux/Dynaloader.pm line 169.

This means that you need to include the -1z compression library on the link line. That can
be done by changing the following line in the file ‘1ib/DBD/mysql/Install.pm’:

$sysliblist .= " -1m";
Change that line to:
$sysliblist .= " -1lm -1z";

After this, you must run make realclean and then proceed with the installation from the
beginning.

If you want to install DBI on SCO, you have to edit the ‘Makefile’ in DBI-xxx and each
subdirectory. Note that the following assumes gcc 2.95.2 or newer:

OLD: NEW:

CC = cc CC = gcc

CCCDLFLAGS = -KPIC -W1,-Bexport CCCDLFLAGS = -fpic

CCDLFLAGS = -wl,-Bexport CCDLFLAGS =

LD = 1d LD = gcc -G -fpic

LDDLFLAGS = -G -L/usr/local/lib LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib LDFLAGS = -L/usr/local/lib
LD = 1d LD = gcc -G -fpic

OPTIMISE = -0d OPTIMISE = -01

Chapter 2: Installing MySQL 181

OLD:
CCCFLAGS = -belf -dy -wO -U M_XENIX -DPERL_SCO5 -I/usr/local/include

NEW:
CCFLAGS = -U M_XENIX -DPERL_SCO05 -I/usr/local/include

These changes are necessary because the Perl dynaloader will not load the DBI modules if
they were compiled with icc or cc.

If you want to use the Perl module on a system that doesn’t support dynamic linking (such
as SCO), you can generate a static version of Perl that includes DBI and DBD: :mysql. The
way this works is that you generate a version of Perl with the DBI code linked in and install
it on top of your current Perl. Then you use that to build a version of Perl that additionally
has the DBD code linked in, and install that.

On SCO, you must have the following environment variables set:
LD_LIBRARY_PATH=/1ib:/usr/lib:/usr/local/lib:/usr/progressive/1lib
Or:

LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/1lib:\
/usr/progressive/lib:/usr/skunk/1lib

LIBPATH=/usr/1lib:/1ib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib: /usr/skunk/1lib

MANPATH=scohelp:/usr/man:/usr/locall/man:/usr/local/man:\
/usr/skunk/man:

First, create a Perl that includes a statically linked DBI module by running these commands
in the directory where your DBI distribution is located:

shell> perl Makefile.PL -static -config
shell> make

shell> make install

shell> make perl

Then you must install the new Perl. The output of make perl will indicate the exact make
command you will need to execute to perform the installation. On SCO, this is make -f
Makefile.aperl inst_perl MAP_TARGET=perl.

Next, use the just-created Perl to create another Perl that also includes a statically linked
DBD: :mysql by running these commands in the directory where your DBD: :mysql distribu-
tion is located:

shell> perl Makefile.PL -static -config

shell> make

shell> make install

shell> make perl
Finally, you should install this new Perl. Again, the output of make perl indicates the
command to use.

182 MySQL Technical Reference for Version 5.0.0-alpha

3 MySQL Tutorial

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql
client program to create and use a simple database. mysql (sometimes referred to as the
“terminal monitor” or just “monitor”) is an interactive program that allows you to connect
to a MySQL server, run queries, and view the results. mysql may also be used in batch
mode: you place your queries in a file beforehand, then tell mysql to execute the contents
of the file. Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the —-help option:
shell> mysql --help
This chapter assumes that mysql is installed on your machine and that a MySQL server is

available to which you can connect. If this is not true, contact your MySQL administrator.
(If you are the administrator, you will need to consult other sections of this manual.)

This chapter describes the entire process of setting up and using a database. If you are
interested only in accessing an already-existing database, you may want to skip over the
sections that describe how to create the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult
the relevant sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you’ll usually need to provide a MySQL username when you invoke
mysql and, most likely, a password. If the server runs on a machine other than the one
where you log in, you’ll also need to specify a hostname. Contact your administrator to find
out what connection parameters you should use to connect (that is, what host, username,
and password to use). Once you know the proper parameters, you should be able to connect
like this:

shell> mysql -h host -u user -p

Enter password: *k*kkkxx
host and user represent the hostname where your MySQL server is running and the user-
name of your MySQL account. Substitute appropriate values for your setup. The ***x***x*
represents your password; enter it when mysql displays the Enter password: prompt.
If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p

Enter password: ¥ kikokkx

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 25338 to server version: 4.0.14-log

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql>
The prompt tells you that mysql is ready for you to enter commands.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the
server running on the local host. If this is the case on your machine, you should be able to
connect to that server by invoking mysql without any options:

Chapter 3: MySQL Tutorial 183

shell> mysql
After you have connected successfully, you can disconnect any time by typing QUIT (or \q)
at the mysql> prompt:

mysql> QUIT

Bye
On Unix, you can also disconnect by pressing Control-D.

Most examples in the following sections assume that you are connected to the server. They
indicate this by the mysql> prompt.

3.2 Entering Queries

Make sure that you are connected to the server, as discussed in the previous section. Doing
so will not in itself select any database to work with, but that’s okay. At this point, it’s
more important to find out a little about how to issue queries than to jump right in creating
tables, loading data into them, and retrieving data from them. This section describes the
basic principles of entering commands, using several queries you can try out to familiarize
yourself with how mysql works.

Here’s a simple command that asks the server to tell you its version number and the current
date. Type it in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;

e et et R et L +
| VERSIONQ) | CURRENT_DATE |
o o +
| 3.22.20a-log | 1999-03-19 |
o e ettt L e et +
1 row in set (0.01 sec)

mysql>

This query illustrates several things about mysql:

e A command normally consists of an SQL statement followed by a semicolon. (There
are some exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is
one of them. We'll get to others later.)

e When you issue a command, mysql sends it to the server for execution and displays
the results, then prints another mysql> prompt to indicate that it is ready for another
command.

e mysql displays query output in tabular form (rows and columns). The first row contains
labels for the columns. The rows following are the query results. Normally, column
labels are the names of the columns you fetch from database tables. If you're retrieving
the value of an expression rather than a table column (as in the example just shown),
mysql labels the column using the expression itself.

e mysql shows how many rows were returned and how long the query took to execute,
which gives you a rough idea of server performance. These values are imprecise because
they represent wall clock time (not CPU or machine time), and because they are affected
by factors such as server load and network latency. (For brevity, the “rows in set” line
is not shown in the remaining examples in this chapter.)

184 MySQL Technical Reference for Version 5.0.0-alpha

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here’s another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)%5;

Fomm fommm +
| SIN(PI()/4) | (4+1)*5 |
Fomm - Fomm - +
| 0.707107 | 25 |
pommm po—m—— - +

The queries shown thus far have been relatively short, single-line statements. You can even
enter multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();

Fmmm +
| VERSION() I
o +
| 3.22.20a-1log |
o +
Fmm +
| NOW() I
e et +
| 1999-03-19 00:15:33 |
R et +

A command need not be given all on a single line, so lengthy commands that require several
lines are not a problem. mysql determines where your statement ends by looking for the
terminating semicolon, not by looking for the end of the input line. (In other words, mysql
accepts free-format input: it collects input lines but does not execute them until it sees the
semicolon.)

Here’s a simple multiple-line statement:

mysql> SELECT

-> USER()

_> ,

—> CURRENT_DATE;
o o +
| USERQ) | CURRENT_DATE |
o fom +
| joesmith@localhost | 1999-03-18 |
T ———— RS —— +

In this example, notice how the prompt changes from mysql> to -> after you enter the first
line of a multiple-line query. This is how mysql indicates that it hasn’t seen a complete
statement and is waiting for the rest. The prompt is your friend, because it provides valuable
feedback. If you use that feedback, you will always be aware of what mysql is waiting for.

Chapter 3: MySQL Tutorial 185

If you decide you don’t want to execute a command that you are in the process of entering,
cancel it by typing \c:
mysql> SELECT
-> USERQ)
-> \c
mysql>
Here, too, notice the prompt. It switches back to mysql> after you type \c, providing
feedback to indicate that mysql is ready for a new command.
The following table shows each of the prompts you may see and summarizes what they
mean about the state that mysql is in:

Prompt Meaning

mysql> Ready for new command.
-> Waiting for next line of multiple-line command.
> Waiting for next line, collecting a string that begins with a single quote

(7).

"> Waiting for next line, collecting a string that begins with a double

quote (‘).
> Waiting for next line, collecting an identifier that begins with a backtick

(c 4 7) .
Multiple-line statements commonly occur by accident when you intend to issue a command
on a single line, but forget the terminating semicolon. In this case, mysql waits for more
input:

mysql> SELECT USER()

->
If this happens to you (you think you’ve entered a statement but the only response is a
-> prompt), most likely mysql is waiting for the semicolon. If you don’t notice what the
prompt is telling you, you might sit there for a while before realising what you need to do.
Enter a semicolon to complete the statement, and mysql will execute it:

mysql> SELECT USER()

e +
| USER(Q) |
e +
| joesmith@localhost |
e +

The ’> and "> prompts occur during string collection. In MySQL, you can write strings
surrounded by either >’ or ‘"’ characters (for example, hello’ or "goodbye"), and mysql
lets you enter strings that span multiple lines. When you see a ’>> or "> prompt, it means
that you’ve entered a line containing a string that begins with a ‘>’ or ‘"’ quote character,
but have not yet entered the matching quote that terminates the string. That’s fine if you
really are entering a multiple-line string, but how likely is that? Not very. More often,
the >> and "> prompts indicate that you've inadvertantly left out a quote character. For
example:
mysql> SELECT * FROM my_table WHERE name = ’Smith AND age < 30;
>

)

186 MySQL Technical Reference for Version 5.0.0-alpha

If you enter this SELECT statement, then press Enter and wait for the result, nothing will
happen. Instead of wondering why this query takes so long, notice the clue provided by the
>> prompt. It tells you that mysql expects to see the rest of an unterminated string. (Do
you see the error in the statement? The string >Smith is missing the second quote.)

At this point, what do you do? The simplest thing is to cancel the command. However,
you cannot just type \c in this case, because mysql interprets it as part of the string that
it is collecting! Instead, enter the closing quote character (so mysql knows you’ve finished
the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = ’Smith AND age < 30;
> 0 \C
mysql>
The prompt changes back to mysql>, indicating that mysql is ready for a new command.

The ‘> prompt is similar to th ’>> and "> prompts, but indicates that you have begun but
not completed a backtick-quoted identifier.

It’s important to know what the >>, "> and ‘> prompts signify, because if you mistakenly
enter an unterminated string, any further lines you type will appear to be ignored by
mysql—including a line containing QUIT! This can be quite confusing, especially if you
don’t know that you need to supply the terminating quote before you can cancel the current
command.

3.3 Creating and Using a Database

Now that you know how to enter commands, it’s time to access a database.

Suppose that you have several pets in your home (your menagerie) and you'd like to keep
track of various types of information about them. You can do so by creating tables to hold
your data and loading them with the desired information. Then you can answer different
sorts of questions about your animals by retrieving data from the tables. This section shows
you how to:

e Create a database

e Create a table

e Load data into the table

e Retrieve data from the table in various ways

e Use multiple tables

The menagerie database will be simple (deliberately), but it is not difficult to think
of real-world situations in which a similar type of database might be used. For
example, a database like this could be used by a farmer to keep track of livestock,
or by a veterinarian to keep track of patient records. A menagerie distribution
containing some of the queries and sample data used in the following sections can be
obtained from the MySQL Web site. It’s available in either compressed tar format
(http://www.mysql.com/Downloads/Contrib/Examples/menagerie.tar.gz) or Zip
format (http://www.mysql.com/Downloads/Contrib/Examples/menagerie.zip).

Use the SHOW statement to find out what databases currently exist on the server:

Chapter 3: MySQL Tutorial 187

mysql> SHOW DATABASES;

fom +
| Database |
S +
| mysql |
| test |
| tmp I
S +

The list of databases is probably different on your machine, but the mysql and test
databases are likely to be among them. The mysql database is required because it de-
scribes user access privileges. The test database is often provided as a workspace for users
to try things out.

Note that you may not see all databases if you don’t have the SHOW DATABASES privilege.
See Section 14.5.1.2 [GRANT], page 717.

If the test database exists, try to access it:

mysql> USE test
Database changed

Note that USE, like QUIT, does not require a semicolon. (You can terminate such statements
with a semicolon if you like; it does no harm.) The USE statement is special in another way,
too: it must be given on a single line.

You can use the test database (if you have access to it) for the examples that follow, but
anything you create in that database can be removed by anyone else with access to it. For
this reason, you should probably ask your MySQL administrator for permission to use a
database of your own. Suppose that you want to call yours menagerie. The administrator
needs to execute a command like this:

mysql> GRANT ALL ON menagerie.* TO ’your_mysql_name’@’your_client_host’;

where your_mysql_name is the MySQL username assigned to you and your_client_host
is the host from which you connect to the server.

3.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you
can begin using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;
Under Unix, database names are case sensitive (unlike SQL keywords), so you must always
refer to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant.
This is also true for table names. (Under Windows, this restriction does not apply, although
you must refer to databases and tables using the same lettercase throughout a given query.)
Creating a database does not select it for use; you must do that explicitly. To make
menagerie the current database, use this command:

mysql> USE menagerie

Database changed

Your database needs to be created only once, but you must select it for use each time you
begin a mysql session. You can do this by issuing a USE statement as shown in the example.

188 MySQL Technical Reference for Version 5.0.0-alpha

Alternatively, you can select the database on the command line when you invoke mysql.
Just specify its name after any connection parameters that you might need to provide. For
example:

shell> mysql -h host -u user -p menagerie
Enter password: *¥kkkxxx

Note that menagerie is not your password on the command just shown. If you want to
supply your password on the command line after the —-p option, you must do so with no
intervening space (for example, as -pmypassword, not as -p mypassword). However, putting
your password on the command line is not recommended, because doing so exposes it to
snooping by other users logged in on your machine.

3.3.2 Creating a Table

Creating the database is the easy part, but at this point it’s empty, as SHOW TABLES will
tell you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you
will need and what columns will be in each of them.

You’ll want a table that contains a record for each of your pets. This can be called the pet
table, and it should contain, as a bare minimum, each animal’s name. Because the name
by itself is not very interesting, the table should contain other information. For example,
if more than one person in your family keeps pets, you might want to list each animal’s
owner. You might also want to record some basic descriptive information such as species
and sex.

How about age?” That might be of interest, but it’s not a good thing to store in a database.
Age changes as time passes, which means you’d have to update your records often. Instead,
it’s better to store a fixed value such as date of birth. Then, whenever you need age, you can
calculate it as the difference between the current date and the birth date. MySQL provides
functions for doing date arithmetic, so this is not difficult. Storing birth date rather than
age has other advantages, too:

e You can use the database for tasks such as generating reminders for upcoming pet
birthdays. (If you think this type of query is somewhat silly, note that it is the same
question you might ask in the context of a business database to identify clients to whom
you’ll soon need to send out birthday greetings, for that computer-assisted personal
touch.)

e You can calculate age in relation to dates other than the current date. For example, if
you store death date in the database, you can easily calculate how old a pet was when
it died.

You can probably think of other types of information that would be useful in the pet table,
but the ones identified so far are sufficient for now: name, owner, species, sex, birth, and
death.

Use a CREATE TABLE statement to specify the layout of your table:

Chapter 3: MySQL Tutorial 189

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
-> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);
VARCHAR is a good choice for the name, owner, and species columns because the column
values will vary in length. The lengths of those columns need not all be the same, and
need not be 20. You can pick any length from 1 to 255, whatever seems most reasonable to

you. (If you make a poor choice and it turns out later that you need a longer field, MySQL
provides an ALTER TABLE statement.)

Several types of values can be chosen to represent sex in animal records, such as ’m’ and
>’ or perhaps ’male’ and ’female’. It’s simplest to use the single characters ’m’ and
£,

The use of the DATE data type for the birth and death columns is a fairly obvious choice.
Now that you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;

e +
| Tables in menagerie |
e +
| pet I
e +

To verify that your table was created the way you expected, use a DESCRIBE statement:
mysql> DESCRIBE pet;

fomm o R — PR T S —— +
| Field | Type | Null | Key | Default | Extra |
fmmm———— e O e fmmm———— e +
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	[
birth	date	YES		NULL	I
death	date	YES		NULL	I
fomm o PR PR S S +

You can use DESCRIBE any time, for example, if you forget the names of the columns in
your table or what types they have.

3.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements
are useful for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL
expects dates in *YYYY-MM-DD’ format; this may be different from what you are used to.)

name owner species sex birth death
Fluffy Harold cat f 1993-02-04
Claws Gwen cat m 1994-03-17
Buffy Harold dog f 1989-05-13
Fang Benny dog m 1990-08-27

190 MySQL Technical Reference for Version 5.0.0-alpha

Bowser Diane dog m 1979-08-31 1995-07-29
Chirpy Gwen bird f 1998-09-11
Whistler Gwen bird 1997-12-09
Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a
text file containing a row for each of your animals, then load the contents of the file into
the table with a single statement.

You could create a text file ‘pet.txt’ containing one record per line, with values separated
by tabs, and given in the order in which the columns were listed in the CREATE TABLE
statement. For missing values (such as unknown sexes or death dates for animals that are
still living), you can use NULL values. To represent these in your text file, use \N (backslash,
capital-N). For example, the record for Whistler the bird would look like this (where the
whitespace between values is a single tab character):

name owner species sex birth death
Whistler Gwen bird \N 1997-12-09 \N

To load the text file ‘pet.txt’ into the pet table, use this command:
mysql> LOAD DATA LOCAL INFILE °’/path/pet.txt’ INTO TABLE pet;

Note that if you created the file on Windows with an editor that uses \r\n as a line
terminator, you should use:

mysql> LOAD DATA LOCAL INFILE ’/path/pet.txt’ INTO TABLE pet
-> LINES TERMINATED BY ’\r\n’;

You can specify the column value separator and end of line marker explicitly in the LOAD
DATA statement if you wish, but the defaults are tab and linefeed. These are sufficient for
the statement to read the file ‘pet.txt’ properly.

If the statement fails, it is likely that your MySQL installation does not have local file
capability enabled by default. See Section 5.4.4 [LOAD DATA LOCAL], page 291 for information
on how to change this.

When you want to add new records one at a time, the INSERT statement is useful. In
its simplest form, you supply values for each column, in the order in which the columns
were listed in the CREATE TABLE statement. Suppose that Diane gets a new hamster named
Puffball. You could add a new record using an INSERT statement like this:

mysql> INSERT INTO pet
-> VALUES (’Puffball’,’Diane’,’hamster’,’f’,’1999-03-30’ ,NULL);

Note that string and date values are specified as quoted strings here. Also, with INSERT,
you can insert NULL directly to represent a missing value. You do not use \N like you do
with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved
to load your records initially using several INSERT statements rather than a single LOAD DATA
statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the
statement is:

Chapter 3: MySQL Tutorial 191

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to
indicate “all columns.” which_table indicates the table from which you want to retrieve
data. The WHERE clause is optional. If it’s present, conditions_to_satisfy specifies
conditions that rows must satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:
mysql> SELECT * FROM pet;

pomm o Fommmm o e Fomm +
| name | owner | species | sex | birth | death |
pomm o fomm o Fomm fomm +
Fluffy	Harold	cat	£	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	£	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	£	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
Fomm fomm - fommm— o Fomm Fomm +

This form of SELECT is useful if you want to review your entire table, for example, after
you've just loaded it with your initial dataset. For example, you may happen to think
that the birth date for Bowser doesn’t seem quite right. Consulting your original pedigree
papers, you find that the correct birth year should be 1989, not 1979.

There are least a couple of ways to fix this:

e Kdit the file ‘pet.txt’ to correct the error, then empty the table and reload it using
DELETE and LOAD DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE ’pet.txt’ INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puftball.
e Fix only the erroneous record with an UPDATE statement:
mysql> UPDATE pet SET birth = ’1989-08-31’ WHERE name = ’Bowser’;

The UPDATE changes only the record in question and does not require you to reload the
table.

3.3.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE
clause from the SELECT statement. But typically you don’t want to see the entire table,

192 MySQL Technical Reference for Version 5.0.0-alpha

particularly when it becomes large. Instead, you’re usually more interested in answering
a particular question, in which case you specify some constraints on the information you
want. Let’s look at some selection queries in terms of questions about your pets that they
answer.

You can select only particular rows from your table. For example, if you want to verify the
change that you made to Bowser’s birth date, select Bowser’s record like this:

mysql> SELECT * FROM pet WHERE name = ’Bowser’;

Fm—— o S o Fomm Fmmm +
| name | owner | species | sex | birth | death |
pomm - oo Hommm— o Fomm Fommmm +
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
Fomm mmm Fomm o e e +

The output confirms that the year is correctly recorded now as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as ’bowser’,
’BOWSER’, etc. The query result will be the same.

You can specify conditions on any column, not just name. For example, if you want to know
which animals were born after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= °1998-1-1°;

e —————— Fm—————— e —————— F————— Fm——————————— Fm—————— +
| name | owner | species | sex | birth | death |
- e - - e - +
| Chirpy | Gwen | bird | £ | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
e —————— Fm—————— Fm———————— F—————— Fm——————————— Fm—————— +

You can combine conditions, for example, to locate female dogs:
mysql> SELECT * FROM pet WHERE species = ’dog’ AND sex = ’f’;

Fo— e Fomm - o o +
| name | owner | species | sex | birth | death |
e e S S o R +
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
e e o e o o +

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = ’snake’ OR species = ’bird’;

Fommm o tomm—— e to——— e Fomm—— +

| name | owner | species | sex | birth | death |

fommm - o pom—m o= e tomm - +

| Chirpy | Gwen | bird | £ | 1998-09-11 | NULL |

| Whistler | Gwen | bird | NULL | 1997-12-09 | NULL |
|

|
| Slim | Benny | snake | 1996-04-29 | NULL |
Fommm - to—————— e o Fommm Fommm - +

AND and OR may be intermixed, although AND has higher precedence than OR. If you use

both operators, it’s a good idea to use parentheses to indicate explicitly how conditions
should be grouped:

mysql> SELECT * FROM pet WHERE (species = ’cat’ AND sex = ’m’)

Chapter 3: MySQL Tutorial 193

-> OR (species = ’dog’ AND sex = ’f’);

oo o Fo—m o Fomm oo +
| name | owner | species | sex | birth | death |
Fomm o pomm - Fomm o Fomm - oo +
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
oo o Fmmm o Fomm oo +

3.3.4.3 Selecting Particular Columns

If you don’t want to see entire rows from your table, just name the columns in which you’re
interested, separated by commas. For example, if you want to know when your animals
were born, select the name and birth columns:

mysql> SELECT name, birth FROM pet;

fmmmm———— o +
| name | birth |
fomm S +
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
fomm S +

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;

| owner |

Gwen
Harold
Benny
Diane
Gwen
Gwen
Benny
Diane

However, notice that the query simply retrieves the owner field from each record, and some
of them appear more than once. To minimize the output, retrieve each unique output record
just once by adding the keyword DISTINCT:

194 MySQL Technical Reference for Version 5.0.0-alpha

mysql> SELECT DISTINCT owner FROM pet;

T —— +
| owner |
Fm————— +
| Benny |
| Diane |
| Gwen |
| Harold |
Fm————— +

You can use a WHERE clause to combine row selection with column selection. For example,
to get birth dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
-> WHERE species = ’dog’ OR species = ’cat’;

e e Fmm o +
| name | species | birth |
e e mm +
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
e e Hmmm +

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no
particular order. It’s often easier to examine query output when the rows are sorted in
some meaningful way. To sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:
mysql> SELECT name, birth FROM pet ORDER BY birth;

o o +
| name | birth |
e Fm——— +
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
e ————— o +

On character type columns, sorting—Ilike all other comparison operations—is normally per-
formed in a case-insensitive fashion. This means that the order will be undefined for columns

Chapter 3: MySQL Tutorial 195

that are identical except for their case. You can force a case-sensitive sort for a column by
using the BINARY cast: ORDER BY BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending)
order, add the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;

Fmm———————— Fmm————————— +
| name | birth |
o o +
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
o o +

You can sort on multiple columns, and you can sort columns in different directions. For
example, to sort by type of animal in ascending order, then by birth date within animal
type in descending order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
—-> ORDER BY species, birth DESC;

Fmmm e Fomm +
| name | species | birth I
Fomm o Fomm +
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
pomm oo Fomm +

Note that the DESC keyword applies only to the column name immediately preceding it
(birth); it does not affect the species column sort order.

3.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for
example, to calculate ages or extract parts of dates.

To determine how many years old each of your pets is, compute the difference in the year
part of the current date and the birth date, then subtract one if the current date occurs

196 MySQL Technical Reference for Version 5.0.0-alpha

earlier in the calendar year than the birth date. The following query shows, for each pet,
the birth date, the current date, and the age in years.

mysql> SELECT name, birth, CURDATE(Q),

-> (YEAR(CURDATE())-YEAR(birth))

-> - (RIGHT(CURDATE(),5)<RIGHT (birth,5))

-> AS age

-> FROM pet;
Fem———————— Fmm————————— Fmm—————————— Fm————— +
| name | birth | CURDATE() | age |
o o o - +
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
to———————— o o +—————— +

Here, YEAR() pulls out the year part of a date and RIGHT () pulls off the rightmost five char-
acters that represent the MM-DD (calendar year) part of the date. The part of the expression
that compares the MM-DD values evaluates to 1 or 0, which adjusts the year difference down
a year if CURDATE() occurs earlier in the year than birth. The full expression is somewhat
ungainly, so an alias (age) is used to make the output column label more meaningful.

The query works, but the result could be scanned more easily if the rows were presented
in some order. This can be done by adding an ORDER BY name clause to sort the output by
name:

mysql> SELECT name, birth, CURDATEQ),

-> (YEAR(CURDATE())-YEAR(birth))

-> - (RIGHT(CURDATE() ,5)<RIGHT (birth,5))

-> AS age

-> FROM pet ORDER BY name;
o o o - +
| name | birth | CURDATE() | age |
Fmmm e ——— o o Fm———— +
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
e ————— Fm——— e e Fm————— +

Chapter 3: MySQL Tutorial

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),

-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))

-> AS age

—-> FROM pet ORDER BY age;

197

- e - +———— +
| name | birth | CURDATE() | age |
Fmmm e ——— Fomm o Fm————— +
| Chirpy | 1998-09-11 | 2003-08-19 | 4 |
| Puffball | 1999-03-30 | 2003-08-19 | 4 |
| Whistler | 1997-12-09 | 2003-08-19 | 5 |
| Slim | 1996-04-29 | 2003-08-19 | 7 |
| Claws | 1994-03-17 | 2003-08-19 | 9 |
| Fluffy | 1993-02-04 | 2003-08-19 | 10 |
| Fang | 1990-08-27 | 2003-08-19 | 12 |
| Bowser | 1989-08-31 | 2003-08-19 | 13 |
| Buffy | 1989-05-13 | 2003-08-19 | 14 |
Fmm———————— Fm——— e F—————— +

A similar query can be used to determine age at death for animals that have died. You
determine which animals these are by checking whether the death value is NULL. Then, for
those with non-NULL values, compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
-> (YEAR(death)-YEAR(birth)) - (RIGHT(death,5)<RIGHT (birth,5))
-> AS age
-> FROM pet WHERE death IS NOT NULL ORDER BY age;

| Bowser | 1989-08-31 | 1995-07-29

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed
later. See Section 3.3.4.6 [Working with NULL], page 198.

What if you want to know which animals have birthdays next month? For this type of
calculation, year and day are irrelevant; you simply want to extract the month part of the
birth column. MySQL provides several date-part extraction functions, such as YEAR(),
MONTH(), and DAYOFMONTH(). MONTH() is the appropriate function here. To see how it
works, run a simple query that displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;

Fmmm o e +
| name | birth | MONTH(birth) |
Fomm—————— o o +
| Fluffy | 1993-02-04 | 2 |
| Claws | 1994-03-17 | 3 |

198 MySQL Technical Reference for Version 5.0.0-alpha

Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
e ———— Fm—— e e +

Finding animals with birthdays in the upcoming month is easy, too. Suppose that the
current month is April. Then the month value is 4 and you look for animals born in May
(month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;

R Fommm o +
| name | birth |
R Fommm +
| Buffy | 1989-05-13 |
o fommm +

There is a small complication if the current month is December. You don’t just add one to
the month number (12) and look for animals born in month 13, because there is no such
month. Instead, you look for animals born in January (month 1).

You can even write the query so that it works no matter what the current month is. That
way you don’t have to use a particular month number in the query. DATE_ADD () allows you
to add a time interval to a given date. If you add a month to the value of CURDATE(), then
extract the month part with MONTH(), the result produces the month in which to look for
birthdays:

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE() ,INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the
current one (after using the modulo function (MOD) to wrap around the month value to 0 if
it is currently 12):
mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

Note that MONTH returns a number between 1 and 12. And MOD(something,12) returns a

number between 0 and 11. So the addition has to be after the MOD(), otherwise we would
go from November (11) to January (1).

3.3.4.6 Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means missing
value or unknown value and it is treated somewhat differently than other values. To test
for NULL, you cannot use the arithmetic comparison operators such as =, <, or <>. To
demonstrate this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;

Fom fomm Fo— Fom— +

| 1 =NULL | 1 <> NULL | 1 < NULL | 1 > NULL |

Chapter 3: MySQL Tutorial 199

Fomm Fomm o Fomm e +

| NULL | NULL | NULL | NULL |
o —————— o ———————— o —————— o +

Clearly you get no meaningful results from these comparisons. Use the IS NULL and IS NOT
NULL operators instead:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;

Fomm e +
| 1 IS NULL | 1 IS NOT NULL |
Fommm o +
I 0 | 1|
fomm o +

Note that in MySQL, 0 or NULL means false and anything else means true. The default
truth value from a boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine
which animals are no longer alive using death IS NOT NULL instead of death <> NULL.
Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and
last if you do ORDER BY ... DESC.

Note that MySQL 4.0.2 to 4.0.10 incorrectly always sorts NULL values first regardless of the
sort direction.

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching
based on extended regular expressions similar to those used by Unix utilities such as vi,
grep, and sed.

SQL pattern matching allows you to use ‘_’ to match any single character and ‘%’ to match
an arbitrary number of characters (including zero characters). In MySQL, SQL patterns
are case-insensitive by default. Some examples are shown here. Note that you do not use =
or <> when you use SQL patterns; use the LIKE or NOT LIKE comparison operators instead.

To find names beginning with ‘b’:
mysql> SELECT * FROM pet WHERE name LIKE °’b%’;

fomm fomm— dom o Fommm Fommm +
| name | owner | species | sex | birth | death |
fommm pommm pommm o e e +
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
tomm— - fomm pom i Fommm fommm +
To find names ending with ‘fy’:

mysql> SELECT * FROM pet WHERE name LIKE °’%fy’;

po—m— - Fommm - fomm - to————— e Fo—m - +

| name | owner | species | sex | birth | death |
fommm tommm e - pommmm tomm— - +

| Fluffy | Harold | cat | £ | 1993-02-04 | NULL |

200 MySQL Technical Reference for Version 5.0.0-alpha

| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
e e R e Hmmm e e +

To find names containing a ‘w’:

mysql> SELECT * FROM pet WHERE name LIKE ’%w%’;

Fom e e e Fommm o +
| name | owner | species | sex | birth | death |
e e o S e o +
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Fom +o————— do—————— o Fommm Fommm +

To find names containing exactly five characters, use five instances of the ‘_’ pattern char-
acter:

mysql> SELECT * FROM pet WHERE name LIKE ’ -

o e Fmm e o o +
| name | owner | species | sex | birth | death |
e e e S o e +
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
o e Fmm A o e +

The other type of pattern matching provided by MySQL uses extended regular expressions.
When you test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators
(or RLIKE and NOT RLIKE, which are synonyms).

Some characteristics of extended regular expressions are:

e ‘.’ matches any single character.

e A character class ‘[...]" matches any character within the brackets. For example,
‘[abc]’ matches ‘a’, ‘b’, or ‘c’. To name a range of characters, use a dash. ‘[a-z]’
matches any letter, whereas ‘[0-9] " matches any digit.

e ‘x’ matches zero or more instances of the thing preceding it. For example, ‘x*’ matches
any number of ‘x’ characters, ‘[0-9]*’ matches any number of digits, and ‘. *’ matches
any number of anything.

e A REGEXP pattern match succeed if the pattern matches anywhere in the value being
tested. (This differs from a LIKE pattern match, which succeeds only if the pattern
matches the entire value.)

e To anchor a pattern so that it must match the beginning or end of the value being
tested, use ‘~” at the beginning or ‘¢’ at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously
are rewritten here to use REGEXP.

To find names beginning with ‘b’, use ‘~’ to match the beginning of the name:
mysql> SELECT * FROM pet WHERE name REGEXP ’~b’;
Fomm - Fomm - Fomm = s Fomm - +

| name | owner | species | sex | birth | death
po—m - Fomm oo o fomm Fmmm o +

Chapter 3: MySQL Tutorial 201

| Buffy | Harold | dog

f | 1989-05-13 | NULL |
| Bowser | Diane | dog m

| 1989-08-31 | 1995-07-29 |

Prior to MySQL Version 3.23.4, REGEXP is case sensitive, and the previous query will return
no rows. In this case, to match either lowercase or uppercase ‘b’, use this query instead:
mysql> SELECT * FROM pet WHERE name REGEXP ’~[bB]’;

From MySQL 3.23.4 on, if you really want to force a REGEXP comparison to be case sensitive,
use the BINARY keyword to make one of the strings a binary string. This query will match
only lowercase ‘b’ at the beginning of a name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY ’~b’;
To find names ending with ‘fy’, use ‘$’ to match the end of the name:
mysql> SELECT * FROM pet WHERE name REGEXP ’fy$’;

Fom—————— Fom—————— Fm———————— tm———— e Fo—————— +
| name | owner | species | sex | birth | death |
- - - - e - +
| Fluffy | Harold | cat | £ | 1993-02-04 | NULL |
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |
tom—————— Fom—————— Fm———————— tm————— e Fo—————— +

To find names containing a ‘w’, use this query:
mysql> SELECT * FROM pet WHERE name REGEXP ’w’;

pomm o fommmm e e e +
| name | owner | species | sex | birth | death |
Fomm o fommm— o Fomm Fomm +
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Fmmm o= Fo———————— o Fomm Fmmm +

Because a regular expression pattern matches if it occurs anywhere in the value, it is not
necessary in the previous query to put a wildcard on either side of the pattern to get it to
match the entire value like it would be if you used an SQL pattern.

To find names containing exactly five characters, use ‘~” and ‘$’ to match the beginning and
end of the name, and five instances of ‘.’ in between:

mysql> SELECT * FROM pet WHERE name REGEXP *~..... $;

to—— - to— fomm—————— o e to—— - +
| name | owner | species | sex | birth | death |
tm—— tm————— e = Fom - +
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | £ | 1989-05-13 | NULL |

e e Fm—m e o o +

You could also write the previous query using the ‘{n}’ “repeat-n-times” operator:
mysql> SELECT * FROM pet WHERE name REGEXP ’~.{5}$’;
e O o S o e +

| name | owner | species | sex | birth | death |
oo pomm - Fo—mmm o Fomm oo +

202 MySQL Technical Reference for Version 5.0.0-alpha

| Claws | Gwen | cat
| Buffy | Harold | dog

m | 1994-03-17 | NULL |
f | 1989-05-13 | NULL |

3.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data
occur in a table?” For example, you might want to know how many pets you have, or how
many pets each owner has, or you might want to perform various kinds of census operations
on your animals.

Counting the total number of animals you have is the same question as “How many rows
are in the pet table?” because there is one record per pet. COUNT (*) counts the number of
rows, so the query to count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;

o ————— +
| COUNT(*) |
Fo————————— +
I 9 |
- +

Earlier, you retrieved the names of the people who owned pets. You can use COUNT () if you
want to find out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;

S R +
| owner | COUNT(*) |
fommm R +
Benny	2
Diane	2
Gwen	3
Harold	2
fommm S +

Note the use of GROUP BY to group together all records for each owner. Without it, all you
get is an error message:

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140: Mixing of GROUP columns (MIN(),MAX(),COUNTQ)...)
with no GROUP columns is illegal if there is no GROUP BY clause

COUNT () and GROUP BY are useful for characterizing your data in various ways. The following
examples show different ways to perform animal census operations.

Number of animals per species:
mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;

R e +
| species | COUNT(*) |
e Hmmmm e +
bird	2
cat	2
dog	3

Chapter 3: MySQL Tutorial 203

| hamster |
| snake |
fom———— o +

Number of animals per sex:
mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;

o Fomm +
| sex | COUNT(x*) |
+o———— Fomm +
| NULL | 1
| £ | 4 |
| m | 4 |
Rt e +

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:
mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
Fo—m o Fmmm +

COUNT (*) |
—————————— +

dog
hamster
snake

RN R R s e

+
I
|
|
|
|
|
|
|
+
I
|
|
|
|
+
I
|
|
|
|
|
|
|
|
+

You need not retrieve an entire table when you use COUNT(). For example, the previous
query, when performed just on dogs and cats, looks like this:
mysql> SELECT species, sex, COUNT(*) FROM pet
—-> WHERE species = ’dog’ OR species = ’cat’
-> GROUP BY species, sex;

R e e +
| species | sex | COUNT(*) |
e e Hmmmm e +
| cat | £ | 11
| cat | m | 11
| dog | £ | 1
| dog | m | 2 |
e e e +

Or, if you wanted the number of animals per sex only for known-sex animals:
mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE sex IS NOT NULL

-> GROUP BY species, sex;
t—————— o o ——— +

204 MySQL Technical Reference for Version 5.0.0-alpha

| species

3.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information
about them, such as events in their lives like visits to the vet or when litters are born, you
need another table. What should this table look like? It needs:

e To contain the pet name so you know which animal each event pertains to.

e A date so you know when the event occurred.

e A field to describe the event.

e An event type field, if you want to be able to categorize events.
Given these considerations, the CREATE TABLE statement for the event table might look like
this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
-> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it’s easiest to load the initial records by creating a tab-delimited text
file containing the information:

name date type remark

Flufty 1995-05-15 litter 4 kittens, 3 female, 1 male
Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male
Buffy 1994-06-19 litter 3 puppies, 3 female
Chirpy 1999-03-21 vet needed beak straightened
Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy
Claws 1998-03-17 birthday Gave him a new flea collar
Whistler 1998-12-09 birthday First birthday

Load the records like this:
mysql> LOAD DATA LOCAL INFILE ’event.txt’ INTO TABLE event;

Based on what you’ve learned from the queries you’ve run on the pet table, you should be
able to perform retrievals on the records in the event table; the principles are the same.
But when is the event table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier
how to calculate ages from two dates. The litter date of the mother is in the event table,

Chapter 3: MySQL Tutorial 205

but to calculate her age on that date you need her birth date, which is stored in the pet
table. This means the query requires both tables:

mysql> SELECT pet.name,
-> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
-> remark
-> FROM pet, event
-> WHERE pet.name = event.name AND type = ’litter’;

fmm——— o S +
| name | age | remark |
fom o fo——— T +
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
fomm o fo——— o +

There are several things to note about this query:

e The FROM clause lists two tables because the query needs to pull information from both
of them.

e When combining (joining) information from multiple tables, you need to specify how
records in one table can be matched to records in the other. This is easy because they
both have a name column. The query uses WHERE clause to match up records in the two
tables based on the name values.

e Because the name column occurs in both tables, you must be specific about which table
you mean when referring to the column. This is done by prepending the table name to
the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a
table to itself, if you want to compare records in a table to other records in that same table.
For example, to find breeding pairs among your pets, you can join the pet table with itself
to produce candidate pairs of males and females of like species:

mysql> SELECT pl.name, pl.sex, p2.name, p2.sex, pl.species
-> FROM pet AS pl, pet AS p2
-> WHERE pl.species = p2.species AND pl.sex = ’f’ AND p2.sex = ’m’;

pomm - o pomm - o tommmm +
| name | sex | name | sex | species |
pomm o pomm o pomm +
| Fluffy | £ | Claws | m | cat |
| Buffy | £ | Fang | m | dog I
| Buffy | £ | Bowser | m | dog I
pomm o Fomm o Fommmm +

In this query, we specify aliases for the table name in order to refer to the columns and
keep straight which instance of the table each column reference is associated with.

206 MySQL Technical Reference for Version 5.0.0-alpha

3.4 Getting Information About Databases and Tables

What if you forget the name of a database or table, or what the structure of a given table is
(for example, what its columns are called)? MySQL addresses this problem through several
statements that provide information about the databases and tables it supports.

You have already seen SHOW DATABASES, which lists the databases managed by the server.
To find out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();

e e +
| DATABASEQ) |
e +
| menagerie |
e +

If you haven’t selected any database yet, the result is NULL (or the empty string before
MySQL 4.1.1).

To find out what tables the current database contains (for example, when you're not sure
about the name of a table), use this command:

mysql> SHOW TABLES;

| event |
| pet I

If you want to find out about the structure of a table, the DESCRIBE command is useful; it
displays information about each of a table’s columns:

mysql> DESCRIBE pet;

fomm o PR PR S R +
| Field | Type | Null | Key | Default | Extra |
N S o TR e A +
| name | varchar(20) | YES | | NULL | |
| owner | varchar(20) | YES | | NULL | |
| species | varchar(20) | YES | | NULL | [
| sex | char(1) | YES | | NULL | |
| birth | date | YES | | NULL | I
| death | date | YES | | NULL | I
fomm fomm S fo——— o I +

Field indicates the column name, Type is the data type for the column, NULL indicates
whether the column can contain NULL values, Key indicates whether the column is indexed,
and Default specifies the column’s default value.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about
them.

Chapter 3: MySQL Tutorial 207

3.5 Using mysql in Batch Mode

In the previous sections, you used mysql interactively to enter queries and view the results.
You can also run mysql in batch mode. To do this, put the commands you want to run in
a file, then tell mysql to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that
cause problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might
look like this:

shell> mysql -h host -u user -p < batch-file
Enter password: *¥kkkxxx

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you
should use the -—-force command-line option.

Why use a script? Here are a few reasons:

e If you run a query repeatedly (say, every day or every week), making it a script allows
you to avoid retyping it each time you execute it.

e You can generate new queries from existing ones that are similar by copying and editing
script files.

e Batch mode can also be useful while you're developing a query, particularly for multiple-
line commands or multiple-statement sequences of commands. If you make a mistake,
you don’t have to retype everything. Just edit your script to correct the error, then
tell mysql to execute it again.

e If you have a query that produces a lot of output, you can run the output through a
pager rather than watching it scroll off the top of your screen:

shell> mysql < batch-file | more
e You can catch the output in a file for further processing:
shell> mysql < batch-file > mysql.out
e You can distribute your script to other people so they can run the commands, too.
e Some situations do not allow for interactive use, for example, when you run a query

from a cron job. In this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode
than when you use it interactively. For example, the output of SELECT DISTINCT species
FROM pet looks like this when mysql is run interactively:

R +
| species |
e +
| bird

|
| cat |
|

208 MySQL Technical Reference for Version 5.0.0-alpha

| hamster |
| snake |

In batch mode, the output looks like this instead:

species

bird

cat

dog

hamster

snake
If you want to get the interactive output format in batch mode, use mysql -t. To echo to
the output the commands that are executed, use mysql -vvv.

You can also use scripts from the mysql prompt by using the source or \. command:

mysql> source filename;
mysql> \. filename

3.6 Examples of Common Queries

Here are examples of how to solve some common problems with MySQL.
Some of the examples use the table shop to hold the price of each article (item number)
for certain traders (dealers). Supposing that each trader has a single fixed price per article,
then (article, dealer) is a primary key for the records.
Start the command-line tool mysql and select a database:
shell> mysql your-database-name
(In most MySQL installations, you can use the database name test).
You can create and populate the example table with these statements:

mysql> CREATE TABLE shop (
-> article INT(4) UNSIGNED ZEROFILL DEFAULT ’0000° NOT NULL,
-> dealer CHAR(20) DEFAULT °*° NOT NULL,
-> price DOUBLE(16,2) DEFAULT ’0.00’ NOT NULL,
-> PRIMARY KEY(article, dealer));

mysql> INSERT INTO shop VALUES
-> (1,’A’,3.45),(1,’B?,3.99),(2,°A°,10.99),(3,’B?,1.45),
-> (8,’C’,1.69),(3,°’D’,1.25),(4,’D’,19.95);

After issuing the statements, the table should have the following contents:

mysql> SELECT * FROM shop;
domm e o +

| article | dealer | price |

Fom——————— Fm——————— Fm—————— +
I 0001 | A | 3.45 |
I 0001 | B | 3.99 |
I 0002 | A | 10.99 |
I 0003 | B | 1.45 |

Chapter 3: MySQL Tutorial 209

I 0003 | C | 1.69 |
I 0003 | D | 1.25 |
I 0004 | D | 19.95 |
Fomm—————— Fm——————— Fm—————— +

3.6.1 The Maximum Value for a Column

“What’s the highest item number?”
SELECT MAX(article) AS article FROM shop;

fomm o +
| article |
fo————— +
| 4 |
N R R —- +

3.6.2 The Row Holding the Maximum of a Certain Column

“Find number, dealer, and price of the most expensive article.”
In standard SQL (and as of MySQL 4.1), this is easily done with a subquery:

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

In MySQL versions prior to 4.1, just do it in two steps:
1. Get the maximum price value from the table with a SELECT statement.
mysql> SELECT MAX(price) FROM shop;

e +
| MAX(price) |
fo—— +
| 19.95 |
o —————— +

2. Using the value 19.95 shown by the previous query to be the maximum article price,
write a query to locate and display the corresponding record:

mysql> SELECT article, dealer, price
-> FROM shop
-> WHERE price=19.95;
fommm - R o +
| article | dealer | price |
domm o e +
| 0004 | D | 19.95 |
Fom— o e +

Another solution is to sort all rows descending by price and only get the first row using the
MySQL-specific LIMIT clause:

210 MySQL Technical Reference for Version 5.0.0-alpha

SELECT article, dealer, price
FROM shop

ORDER BY price DESC

LIMIT 1;

Note: If there were several most expensive articles, each with a price of 19.95, the LIMIT
solution would show only one of them!

3.6.3 Maximum of Column per Group

“What’s the highest price per article?”
SELECT article, MAX(price) AS price

FROM shop
GROUP BY article

Fommmm o +
| article | price |
o o +
0001	3.99
0002	10.99
0003	1.69
0004	19.95
Fomm o +

3.6.4 The Rows Holding the Group-wise Maximum of a Certain
Field

“For each article, find the dealer or dealers with the most expensive price.”
In standard SQL (and as of MySQL 4.1), the problem can be solved with a subquery like
this:

SELECT article, dealer, price
FROM shop si
WHERE price=(SELECT MAX(s2.price)
FROM shop s2
WHERE si.article = s2.article);

In MySQL versions prior to 4.1, it’s best do it in several steps:
1. Get the list of (article,maxprice) pairs.

2. For each article, get the corresponding rows that have the stored maximum price.

This can easily be done with a temporary table and a join:

CREATE TEMPORARY TABLE tmp (
article INT(4) UNSIGNED ZEROFILL DEFAULT ’0000’ NOT NULL,
price DOUBLE(16,2) DEFAULT ’0.00° NOT NULL);

LOCK TABLES shop READ;

Chapter 3: MySQL Tutorial 211

INSERT INTO tmp SELECT article, MAX(price) FROM shop GROUP BY article;

SELECT shop.article, dealer, shop.price FROM shop, tmp
WHERE shop.article=tmp.article AND shop.price=tmp.price;

UNLOCK TABLES;

DROP TABLE tmp;
If you don’t use a TEMPORARY table, you must also lock the tmp table.
“Can it be done with a single query?”
Yes, but only by using a quite inefficient trick called the “MAX-CONCAT trick”:

SELECT article,
SUBSTRING(MAX(CONCAT(LPAD(price,6,’0’),dealer)), 7) AS dealer,
0.00+LEFT(MAX(CONCAT(LPAD(price,6,’0’),dealer)), 6) AS price
FROM shop
GROUP BY article;

dommm o do— - Ho—m———— +
| article | dealer | price |
Fomm o o +
0001	B	3.99
0002	A	10.99
0003	C	1.69
I 0004 | D | 19.95 |
Fommm— o o +

The last example can be made a bit more efficient by doing the splitting of the concatenated
column in the client.

3.6.5 Using User Variables

You can use MySQL user variables to remember results without having to store them in
temporary variables in the client. See Section 10.3 [Variables], page 518.

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
Fommmm Fomm - o +
| article | dealer | price |

I 0003 | D
| 0004 | D

212 MySQL Technical Reference for Version 5.0.0-alpha

3.6.6 Using Foreign Keys

In MySQL 3.23.44 and up, InnoDB tables support checking of foreign key constraints. See
Chapter 16 [InnoDB|, page 787. See also Section 1.8.5.5 [ANSI diff Foreign Keys|, page 48.

You don’t actually need foreign keys to join two tables. For table types other than InnoDB,
the only things MySQL currently doesn’t do are 1) CHECK to make sure that the keys you
use really exist in the table or tables you're referencing and 2) automatically delete rows
from a table with a foreign key definition. Using your keys to join tables will work just fine:

CREATE TABLE person (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
name CHAR(60) NOT NULL,
PRIMARY KEY (id)

)

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM(’t-shirt’, ’polo’, ’dress’) NOT NULL,
color ENUM(’red’, ’blue’, ’orange’, ’white’, ’black’) NOT NULL,
owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
PRIMARY KEY (id)
);

INSERT INTO person VALUES (NULL, ’Antonio Paz’);

INSERT INTO shirt VALUES

(NULL, ’polo’, ’blue’, LAST_INSERT_ID()),
(NULL, ’dress’, ’white’, LAST_INSERT_ID()),
(NULL, ’t-shirt’, ’blue’, LAST_INSERT_ID());

INSERT INTO person VALUES (NULL, ’Lilliana Angelovska’);

INSERT INTO shirt VALUES

(NULL, ’dress’, ’orange’, LAST_INSERT_ID()),
(NULL, ’polo’, ’red’, LAST_INSERT_ID()),
(NULL, ’dress’, ’blue’, LAST_INSERT_ID()),
(NULL, ’t-shirt’, ’white’, LAST_INSERT_ID());

SELECT * FROM person;

e et B e +
| id | name |
s e +
| 1 | Antonio Paz I
| 2 | Lilliana Angelovska |

Chapter 3: MySQL Tutorial 213

T e +

SELECT * FROM shirt;

e B pomm - oo +
| id | style | color | owner |
s T Fom— o +
| 1 | polo | blue | 1|
| 2| dress | white | 1|
| 3 | t-shirt | blue | 1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
e B pomm o +

SELECT s.* FROM person p, shirt s
WHERE p.name LIKE ’Lillianaj’
AND s.owner = p.id
AND s.color <> ’white’;

Fmm e — S S +
| id | style | color | owner |
et SR o Hmm—— +
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
et S o Fmm—— +

3.6.7 Searching on Two Keys

MySQL doesn’t yet optimize when you search on two different keys combined with OR
(searching on one key with different OR parts is optimized quite well):

SELECT fieldl_index, field2_index FROM test_table

WHERE fieldl_index = ’1’ OR field2_index = ’1°
The reason is that we haven’t yet had time to come up with an efficient way to handle this
in the general case. (The AND handling is, in comparison, now completely general and works
very well.)
In MySQL 4.0 and up, you can solve this problem efficiently by using a UNION that combines
the output of two separate SELECT statements. See Section 14.1.7.2 [UNION], page 677.
Each SELECT searches only one key and can be optimized:

SELECT fieldl_index, field2_index

FROM test_table WHERE fieldl_index = ’1°
UNION
SELECT fieldl_index, field2_index

FROM test_table WHERE field2_index = ’1°;

214 MySQL Technical Reference for Version 5.0.0-alpha

Prior to MySQL 4.0, you can achieve the same effect by using a TEMPORARY table and
separate SELECT statements. This type of optimization is also very good if you are using
very complicated queries where the SQL server does the optimizations in the wrong order.

CREATE TEMPORARY TABLE tmp
SELECT fieldl_index, field2_index

FROM test_table WHERE fieldl_index = ’1°’;
INSERT INTO tmp
SELECT fieldl_index, field2_index

FROM test_table WHERE field2_index = ’1°;

SELECT * from tmp;
DROP TABLE tmp;

This method of solving the problem is in effect a UNION of two queries.

3.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the
number of days per month a user has visited a Web page.

CREATE TABLE tl1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
day INT(2) UNSIGNED ZEROFILL);

INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30), (2000,2,2),
(2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page.
To determine how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
GROUP BY year,month;

Which returns:

e e R +
| year | month | days |
e R R +
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
R e R +

The query calculates how many different days appear in the table for each year/month
combination, with automatic removal of duplicate entries.

3.6.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (id)
);
INSERT INTO animals (name) VALUES (’dog’),(’cat’),(’penguin’),

Chapter 3: MySQL Tutorial 215

(’lax’), (’whale’), (’ostrich’);
SELECT * FROM animals;

Which returns:

+
|

+

| dog |
| cat |

| penguin |

| lax |

| whale [

| ostrich |

e +

You can retrieve the most recent AUTO_INCREMENT value with the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. These functions are connection-
specific, so their return value is not affected by another connection also doing inserts.

Note: For a multiple-row insert, LAST_INSERT_ID() /mysql_insert_id() will actually re-
turn the AUTO_INCREMENT key from the first of the inserted rows. This allows multiple-row
inserts to be reproduced correctly on other servers in a replication setup.

For MyISAM and BDB tables you can specify AUTO_INCREMENT on a secondary column in a
multiple-column index. In this case, the generated value for the AUTO_INCREMENT column
is calculated as MAX(auto_increment_column)+1 WHERE prefix=given-prefix. This is
useful when you want to put data into ordered groups.

CREATE TABLE animals (
grp ENUM(°fish’,’mammal’,’bird’) NOT NULL,
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (grp,id)
);

INSERT INTO animals (grp,name) VALUES(’mammal’,’dog’),(’mammal’,’cat’),
(’bird’,’penguin’),(*fish’,’lax’), (°mammal’, ’whale’),
(’bird’,’ostrich’);

SELECT * FROM animals ORDER BY grp,id;

Which returns:

R — fom +
| grp | id | name |
e T +
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
SRR - fomm e +

216 MySQL Technical Reference for Version 5.0.0-alpha

Note that in this case (when the AUTO_INCREMENT column is part of a multiple-column
index), AUTO_INCREMENT values will be reused if you delete the row with the biggest AUTO_
INCREMENT value in any group. This happens even for MyISAM tables, for which AUTO_
INCREMENT values normally are not reused.)

3.7 Queries from the Twin Project

At Analytikerna and Lentus, we have been doing the systems and field work for a big
research project. This project is a collaboration between the Institute of Environmental
Medicine at Karolinska Institutet Stockholm and the Section on Clinical Research in Aging
and Psychology at the University of Southern California.

The project involves a screening part where all twins in Sweden older than 65 years are
interviewed by telephone. Twins who meet certain criteria are passed on to the next stage.
In this latter stage, twins who want to participate are visited by a doctor/nurse team.
Some of the examinations include physical and neuropsychological examination, laboratory
testing, neuroimaging, psychological status assessment, and family history collection. In
addition, data are collected on medical and environmental risk factors.

More information about Twin studies can be found at: http://www.mep.ki.se/twinreg/index_|i

en.html

The latter part of the project is administered with a Web interface written using Perl and
MySQL.
Each night all data from the interviews is moved into a MySQL database.

3.7.1 Find All Non-distributed Twins

The following query is used to determine who goes into the second part of the project:

SELECT
CONCAT(pl.id, pl.tvab) + 0 AS tvid,
CONCAT(pl.christian_name, ’> ’, pl.surname) AS Name,
pl.postal_code AS Code,
pl.city AS City,
pg.abrev AS Area,
IF(td.participation = ’Aborted’, ’A’, ’> ’) AS A,
pl.dead AS deadl,
l.event AS eventl,
td.suspect AS tsuspectl,
id.suspect AS isuspectl,
td.severe AS tseverel,
id.severe AS iseverel,
p2.dead AS dead2,
12.event AS event2,
h2.nurse AS nurse2,
h2.doctor AS doctor2,
td2.suspect AS tsuspect2,
id2.suspect AS isuspect2,

Chapter 3: MySQL Tutorial 217

td2.severe AS tsevere2,
id2.severe AS isevere2,
1.finish_date
FROM
twin_project AS tp
/* For Twin 1 =/
LEFT JOIN twin_data AS td ON tp.id = td.id
AND tp.tvab = td.tvab
LEFT JOIN informant_data AS id ON tp.id = id.id
AND tp.tvab = id.tvab
LEFT JOIN harmony AS h ON tp.id = h.id
AND tp.tvab = h.tvab
LEFT JOIN lentus AS 1 ON tp.id = 1.id
AND tp.tvab = 1l.tvab
/* For Twin 2 =%/
LEFT JOIN twin_data AS td2 ON p2.id = td2.id
AND p2.tvab = td2.tvab
LEFT JOIN informant_data AS id2 ON p2.id = id2.id
AND p2.tvab = id2.tvab
LEFT JOIN harmony AS h2 ON p2.id = h2.id
AND p2.tvab = h2.tvab
LEFT JOIN lentus AS 12 ON p2.id = 12.id
AND p2.tvab = 12.tvab,
person_data AS pi,
person_data AS p2,
postal_groups AS pg
WHERE
/* pl gets main twin and p2 gets his/her twin. */
/* ptvab is a field inverted from tvab */
pl.id = tp.id AND pl.tvab = tp.tvab AND
p2.id = pl.id AND p2.ptvab = pl.tvab AND
/* Just the sceening survey */
tp.survey_no = 5 AND
/* Skip if partner died before 65 but allow emigration (dead=9) x*/
(p2.dead = 0 OR p2.dead = 9 OR
(p2.dead = 1 AND
(p2.death_date = 0 OR
(((TO_DAYS(p2.death_date) - TO_DAYS(p2.birthday)) / 365)
>= 65))))
AND
(
/* Twin is suspect */
(td.future_contact = ’Yes’ AND td.suspect = 2) OR
/* Twin is suspect - Informant is Blessed */
(td.future_contact = ’Yes’ AND td.suspect = 1
AND id.suspect = 1) OR
/* No twin - Informant is Blessed */

*

218 MySQL Technical Reference for Version 5.0.0-alpha

(ISNULL(td.suspect) AND id.suspect = 1
AND id.future_contact = ’Yes’) OR
/* Twin broken off - Informant is Blessed */
(td.participation = ’Aborted’
AND id.suspect = 1 AND id.future_contact = ’Yes’) OR
/* Twin broken off - No inform - Have partner */
(td.participation = ’Aborted’ AND ISNULL(id.suspect)
AND p2.dead = 0))
AND
l.event = ’Finished’
/* Get at area code */
AND SUBSTRING(pl.postal_code, 1, 2) = pg.code
/* Not already distributed */
AND (h.nurse IS NULL OR h.nurse=00 OR h.doctor=00)
/* Has not refused or been aborted */
AND NOT (h.status = ’Refused’ OR h.status = ’Aborted’
OR h.status = ’Died’ OR h.status = ’0Other’)
ORDER BY
tvid;
Some explanations:

CONCAT(pl.id, pl.tvab) + 0 AS tvid
We want to sort on the concatenated id and tvab in numerical order. Adding
0 to the result causes MySQL to treat the result as a number.

column id This identifies a pair of twins. It is a key in all tables.

column tvab
This identifies a twin in a pair. It has a value of 1 or 2.

column ptvab
This is an inverse of tvab. When tvab is 1 this is 2, and vice versa. It exists
to save typing and to make it easier for MySQL to optimize the query.

This query demonstrates, among other things, how to do lookups on a table from the same
table with a join (p1 and p2). In the example, this is used to check whether a twin’s partner
died before the age of 65. If so, the row is not returned.

All of the above exist in all tables with twin-related information. We have a key on both
id,tvab (all tables), and id,ptvab (person_data) to make queries faster.

On our production machine (A 200MHz UltraSPARC), this query returns about 150-200
rows and takes less than one second.

The current number of records in the tables used in the query:

Table Rows
person_data 71074
lentus 5291
twin_project 5286
twin_data 2012

informant_data 663

Chapter 3: MySQL Tutorial 219

harmony 381
postal_groups 100

3.7.2 Show a Table of Twin Pair Status

Each interview ends with a status code called event. The query shown here is used to
display a table over all twin pairs combined by event. This indicates in how many pairs
both twins are finished, in how many pairs one twin is finished and the other refused, and
SO on.

SELECT
tl.event,
t2.event,
COUNT (*)
FROM
lentus AS ti,
lentus AS t2,
twin_project AS tp
WHERE

/* We are looking at one pair at a time */
tl.id = tp.id
AND tl1.tvab=tp.tvab
AND t1.id = t2.id
/* Just the sceening survey */
AND tp.survey_no = 5
/* This makes each pair only appear once */
AND t1.tvab=’1’ AND t2.tvab=’2’
GROUP BY
tl.event, t2.event;

3.8 Using MySQL with Apache

There are programs that let you authenticate your users from a MySQL database and also
let you write your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the
following into the Apache configuration file:

LogFormat \
NGO\, A {AY AmAd L HAMYS I, %>s , \"%b\" ,\"%{Content-Type}o\", \
\"%UN" ,\"%{Referer}i\" ,\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE °’/local/access_log’ INTO TABLE tbl_name
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’ ESCAPED BY ’\\’

The named table should be created to have columns that correspond to those that the
LogFormat line writes to the log file.

220 MySQL Technical Reference for Version 5.0.0-alpha

4 Using MySQL Programs

This chapter provides a brief overview of the programs provided by MySQL AB and dis-
cusses how to specify options when you run these programs. Most programs have options
that are specific to their own operation, but the syntax for specifying options is similar
for all of them. Later chapters provide more detailed descriptions of individual programs,
including which options they recognize.

4.1 Overview of MySQL Programs

MySQL AB provides several types of programs:

The MYSQL server and server startup scripts:
e mysqld is the MySQL server
e mysqld_safe, mysql.server, and mysqld_multi are server startup scripts
e mysql_install_db initializes the data directory and the initial databases

These programs are discussed further in Chapter 5 [MySQL Database Admin-
istration], page 229.

Client programs that access the server:
e mysql is a command-line client for executing SQL statements interactively
or in batch mode

e mysqlcc (MySQL Control Center) is an interactive graphical tool for exe-
cuting SQL statements and administration

e mysqladmin is an administrative client

e mysqglcheck performs table maintenance operations

e mysqldump and mysqlhotcopy make database backups

e mysqlimport imports data files

e mysqlshow displays information about databases and tables

These programs are discussed further in Chapter 8 [Client-Side Scripts],
page 468.

Utility programs that operate independently of the server:
e myisamchk performs table maintenance operations

e myisampack produces compressed, read-only tables
e mysqlbinlog is a tool for processing binary log files

e perror displays error code meanings

myisamchk is discussed further in Chapter 5 [MySQL Database Administration],
page 229. The other programs are further in Chapter 8 [Client-Side Scripts],
page 468.

Most MySQL distributions include all of these programs, except for those programs that
are platform-specific. (For example, the server startup scripts are not used on Windows.)
The exception is that RPM distributions are more specialized. There is one RPM for the
server, another for the client programs, and so forth. If you appear to be missing one or
more programs, see Chapter 2 [Installing], page 59 for information on types of distributions
and what they contain. It may be that you need to install something else.

Chapter 4: Using MySQL Programs 221

4.2 Invoking MySQL Programs

To invoke a MySQL program at the command line (that is, from your shell or command
prompt), enter the program name followed by any options or other arguments needed to
instruct the program what you want it to do. The following commands show some sample
program invocations. “shell>” represents the prompt for your command interpreter; it is
not part of what you type. The particular prompt you will see depends on your command
interpreter. Typical prompts are $ for sh or bash, % for csh or tcsh, and C:\> for Windows
command.com or cmd.exe.

shell> mysql test

shell> mysqladmin extended-status variables
shell> mysqlshow --help

shell> mysqldump --user=root personnel

Arguments that begin with a dash are option arguments. They typically specify the type
of connection a program should make to the server or affect its operational mode. Options
have a syntax that is described in Section 4.3 [Program Options|, page 221.

Non-option arguments (arguments with no leading dash) provide additional information to
the program. For example, the mysql program interprets the first non-option argument as
a database name, so the command mysql test indicates that you want to use the test
database.

Later sections that describe individual programs indicate which options a program under-
stands and describe the meaning of any additional non-option arguments.

Some options are common to a number of programs. The most common of these are the --
host, ——user, and --password options that specify connection parameters. They indicate
the host where the MySQL server is running, and the username and password of your
MySQL account. All MySQL client programs understand these options; they allow you to
specify which server to connect to and the account to use on that server.

You may find it necessary to invoke MySQL programs using the pathname to the ‘bin’
directory in which they are installed. This is likely to be the case if you get a “program not
found” error whenever you attempt to run a MySQL program from any directory other than
the ‘bin’ directory. To make it more convenient to use MySQL, you can add the pathname
of the ‘bin’ directory to your PATH environment variable setting. Then to run a program
you need only type its name, not its entire pathname.

Consult the documentation for your command interpreter for instructions on setting your
PATH. The syntax for setting environment variables is interpreter-specific.

4.3 Specifying Program Options

You can provide options for MySQL programs in several ways:

e On the command line following the program name. This is most common for options
that apply to a specific invocation of the program.

e In an option file that the program reads when it starts. This is common for options
that you want the program to use each time it runs.

222 MySQL Technical Reference for Version 5.0.0-alpha

e In environment variables. These are useful for options that you want to apply each
time the program runs, although in practice option files are used more commonly for
this purpose. (Section 5.10.2 [Multiple Unix servers|, page 372 discusses one situation
in which environment variables can be very helpful. It describes a handy technique
that uses such variables to specify the TCP/IP port number and Unix socket file for
both the server and client programs.)

MySQL programs determine which options are given first by examining environment vari-
ables, then option files, and then the command line. If an option is specified multiple
times, the last occurrence takes precedence. This means that environment variables have
the lowest precedence and command-line options the highest.

You can take advantage of the way that MySQL programs process options by specifying the
default values for a program’s options in an option file. Then you need not type them each
time you run the program, but can override the defaults if necessary by using command-line
options.

4.3.1 Using Options on the Command Line

Program options specified on the command line follow these rules:

e Options are given after the command name.

e An option argument begins with one dash or two dashes, depending on whether it has
a short name or a long name. Many options have both forms. For example, -7 and
—--help are the short and long forms of the option that instructs a MySQL program to
display a help message.

Option names are case sensitive. -v and -V are both legal and have different meanings.
(They are the corresponding short forms of the —-verbose and --version options.)

Some options take a value following the option name. For example, -h localhost or
--host=1localhost indicate the MySQL server host to a client program. The option
value tells the program the name of the host where the MySQL server is running.

For a long option that takes a value, separate the option name and the value by an ‘=’
sign. For a short option that takes a value, the option value can immediately follow
the option letter, or there can be a space between. (-hlocalhost and -h localhost
are equivalent.) An exception to this rule is the option for specifying your MySQL
password. This option can be given in long form as --password=pass_val or as —-
password. In the latter case (with no password value given), the program will prompt
you for the password. The password option also may be given in short form as -ppass_
val or as -p. However, for the short form, if the password value is given, it must follow
the option letter with no intervening space. The reason for this is that if a space
follows the option letter, the program has no way to tell whether a following argument
is supposed to be the password value or some other kind of argument. Consequently,
the following two commands have two completely different meanings:

shell> mysql -ptest

shell> mysql -p test
The first command instructs mysql to use a password value of test, but specifies no
default database. The second instructs mysql to prompt for the password value and to
use test as the default database.

Chapter 4: Using MySQL Programs 223

MySQL 4.0 introduced some additional flexibility in the way you specify options. These
changes were made in MySQL 4.0.2. Some of them relate to the way you specify options
that have “enabled” and “disabled” states, and to the use of options that might be present
in one version of MySQL but not another. Those capabilities are discussed in this section.
Another change pertains to the way you use options to set program variables. Section 4.3.4
[Program variables|, page 227 discusses that topic further.

Some options control behavior that can be turned on or off. For example, the mysql
client supports a ——column-names option that determines whether or not to display a row
of column names at the beginning of query results. By default, this option is enabled.
However, you may want to disable it in some instances, such as when sending the output
of mysql into another program that expects to see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

—-disable-column—-names
--skip-column-names
—-column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn
the option off.

The “enabled” form of the option may be specified in any of these ways:

—-column—-names
——-enable-column—-names
—-column-names=1

Another change to option processing introduced in MySQL 4.0 is that you can use the
--loose prefix for command-line options. If an option is prefixed by --loose, the program
will not exit with an error if it does not recognize the option, but instead will issue only a
warning:

shell> mysql --loose-no-such-option

mysql: WARNING: unknown option ’--no-such-option’

The --loose prefix can be useful when you run programs from multiple installations of
MySQL on the same machine, at least if all the versions are as recent as 4.0.2. This prefix
is particularly useful when you list options in an option file. An option that may not be
recognized by all versions of a program can be given using the --loose prefix (or loose in
an option file). Versions of the program that do not recognize the option will issue a warning
and ignore it. This strategy requires that versions involved be 4.0.2 or later, because earlier
versions know nothing of the --loose convention.

4.3.2 Using Option Files

MySQL programs can read startup options from option files (also sometimes called config-
uration files). Option files provide a convenient way to specify commonly used options so
that they need not be entered on the command line each time you run a program. Option
file capability is available from MySQL 3.22 on.

The following programs support option files: myisamchk, myisampack, mysql,
mysql.server, mysqladmin, mysqlbinlog, mysqlcc, mysqlcheck, mysqld_safe,
mysqldump, mysqld, mysqlhotcopy, mysqlimport, and mysqlshow.

224 MySQL Technical Reference for Version 5.0.0-alpha

On Windows, MySQL programs read startup options from the following files:

Filename Purpose
WINDIR\my.ini Global options
C:\my.cnf Global options

WINDIR represents the location of your Windows directory. This is commonly
‘C:\Windows’ or ‘C:\WinNT’. You can determine its exact location from the value of the
WINDIR environment variable using the following command:

C:\> echo %WINDIR%
On Unix, MySQL programs read startup options from the following files:

Filename Purpose

/etc/my.cnf Global options

DATADIR /my . cnf Server-specific options

defaults-extra-file The file specified with ——defaults-extra-file=path, if any
~/.my.cnf User-specific options

DATADIR represents the location of the MySQL data directory. Typically this is
‘/usr/local/mysql/data’ for a binary installation or ‘/usr/local/var’ for a source
installation. Note that this is the data directory location that was specified at configuration
time, not the one specified with --datadir when mysqld starts. Use of --datadir at
runtime has no effect on where the server looks for option files, because it looks for them
before processing any command-line arguments.

MySQL looks for option files in the order just described and reads any that exist. If an
option file that you want to use does not exist, create it with a plain text editor. If multiple
option files exist, an option specified in a file read later takes precedence over the same
option specified in a file read earlier.

Any long option that may be given on the command line when running a MySQL program
can be given in an option file as well. To get the list of available options for a program, run
it with the --help option.

The syntax for specifying options in an option file is similar to command-line syntax, except
that you omit the leading two dashes. For example, ~—quick or --host=1localhost on the
command line should be specified as quick or host=localhost in an option file. To specify
an option of the form --loose-opt_name in an option file, write it as loose-opt_name.

Empty lines in option files are ignored. Non-empty lines can take any of the following forms:

#comment
;comment Comment lines start with ‘4’ or ‘;’. As of MySQL 4.0.14, a ‘#’-comment can
start in the middle of a line as well.

[group]l group is the name of the program or group for which you want to set options.
After a group line, any opt_name or set-variable lines apply to the named
group until the end of the option file or another group line is given.

opt_name This is equivalent to ——opt_name on the command line.

opt_name=value
This is equivalent to --opt_name=value on the command line. In an option
file, you can have spaces around the ‘=’ character, something that is not true on
the command line. As of MySQL 4.0.16, you can quote the value with double

Chapter 4: Using MySQL Programs 225

quotes or single quotes. This is useful if the value contains a ‘4’ comment
character or whitespace.

set-variable = var_name=value
Set the program variable var_name to the given value. This is equivalent to
--set-variable=var_name=value on the command line. Spaces are allowed
around the first ‘=" character but not around the second. This syntax is dep-
recated as of MySQL 4.0. See Section 4.3.4 [Program variables|, page 227 for
more information on setting program variables.

Leading and trailing blanks are automatically deleted from option names and values. You
may use the escape sequences ‘\b’, ‘\t’, ‘\n’, ‘\r’, ‘\\’, and ‘\s’ in option values to represent
the backspace, tab, newline, carriage return, and space characters.

On Windows, if an option value represents a pathname, you should specify the value using
¢/’ rather than ‘\’ as the pathname separator. If you use ‘\’, you must double it as ‘\\’,
because ‘\’ is the escape character in MySQL.

If an option group name is the same as a program name, options in the group apply
specifically to that program.
The [client] option group is read by all client programs (but not by mysqld). This allows
you to specify options that apply to every client. For example, [client] is the perfect
group to use to specify the password that you use to connect to the server. (But make sure
that the option file is readable and writable only by yourself, so that other people cannot
find out your password.) Be sure not to put an option in the [client] group unless it
is recognized by all client programs that you use. Programs that do not understand the
option will quit after displaying an error message if you try to run them.
As of MySQL 4.0.14, if you want to create option groups that should be read only by
one specific mysqld server release series, you can do this by using groups with names of
[mysqld-4.0], [mysqld-4.1], and so forth. The following group indicates that the ——new
option should be used only by MySQL servers with 4.0.x version numbers:

[mysqld-4.0]

new
Here is a typical global option file:

[client]

port=3306

socket=/tmp/mysql.sock

[mysqld]

port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M

[mysqldump]

quick
The preceding option file uses var_name=value syntax for the lines that set the key_
buffer_size and max_allowed_packet variables. Prior to MySQL 4.0.2, you would need
to use set-variable syntax instead (described earlier in this section).

226 MySQL Technical Reference for Version 5.0.0-alpha

Here is a typical user option file:

[client]
The following password will be sent to all standard MySQL clients
password="my_password"

[mysqll
no-auto-rehash
set-variable = connect_timeout=2

[mysqlhotcopy]
interactive-timeout

This option file uses set-variable syntax to set the connect_timeout variable. For
MySQL 4.0.2 and up, you can also set the variable using just connect_timeout=2.

If you have a source distribution, you will find sample option files named ‘my-xxxx.cnf’
in the ‘support-files’ directory. If you have a binary distribution, look in the
‘support-files’ directory under your MySQL installation directory (typically ‘C:\mysql’
on Windows or ‘/usr/local/mysql’ on Unix). Currently there are sample option files for
small, medium, large, and very large systems. To experiment with one of these files, copy
it to ‘C:\my.cnf’ on Windows or to ‘.my.cnf’ in your home directory on Unix.

Note: On Windows, the ‘.cnf’ option file extension might not be displayed.
All MySQL programs that support option files handle the following command-line options:

--no-defaults
Don’t read any option files.

--print-defaults
Print the program name and all options that it will get from option files.

--defaults-file=path_name
Use only the given option file. path_name is the full pathname to the file.

--defaults-extra-file=path_name
Read this option file after the global option file but before the user option file.
path_name is the full pathname to the file.

To work properly, each of these options must immediately follow the command name on
the command line, with the exception that —-print-defaults may be used immediately
after ——defaults-file or ——defaults-extra-file.

In shell scripts, you can use the my_print_defaults program to parse option files. The
following example shows the output that my_print_defaults might produce when asked
to show the options found in the [client] and [mysql] groups:

shell> my_print_defaults client mysql

—--port=3306

--socket=/tmp/mysql.sock

--no-auto-rehash
Note for developers: Option file handling is implemented in the C client library simply
by processing all matching options (that is, options in the appropriate group) before any

Chapter 4: Using MySQL Programs 227

command-line arguments. This works nicely for programs that use the last instance of
an option that is specified multiple times. If you have a C or C++ program that handles
multiply specified options this way but doesn’t read option files, you need add only two
lines to give it that capability. Check the source code of any of the standard MySQL clients
to see how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of
them provide a way to access option file contents. These include Perl and Python. See the
documentation for your preferred interface for details.

4.3.3 Using Environment Variables to Specify Options

To specify an option using an environment variable, set the variable using the syntax ap-
propriate for your comment processor. For example, on Windows or NetWare, you can set
the USER variable to specify your MySQL account name. To do so, use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP /IP
port number using the MYSQL_TCP_PORT variable. The syntax for Bourne shell and variants
(sh, bash, zsh, etc.) is:

MYSQL_TCP_PORT=3306
For csh and tcsh, use this syntax:
setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt
to take effect immediately. These settings persist until you log out. To have the settings
take effect each time you log in, place the appropriate command or commands in a startup
file that your command interpreter reads each time it starts. Typical startup files are
‘AUTOEXEC.BAT’ for Windows, ‘.bash_profile’ for bash, or ‘.tcshrc’ for tcsh. Consult
the documentation for your command interpreter for specific details.

Appendix E [Environment variables], page 1288 lists all environment variables that affect
MySQL program operation.

4.3.4 Using Options to Set Program Variables

Many MySQL programs have internal variables that can be set at runtime. As of MySQL
4.0.2, program variables are set the same way as any other long option that takes a value.
For example, mysql has a max_allowed_packet variable that controls the maximum size
of its communication buffer. To set the max_allowed_packet variable for mysql to a value
of 16MB, use either of the following commands:

shell> mysql --max_allowed_packet=16777216
shell> mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes.
Variable values can have a suffix of K, M, or G (either uppercase or lowercase) to indicate
units of kilobytes, megabytes, or gigabytes.

In an option file, the variable setting is given without the leading dashes:

228 MySQL Technical Reference for Version 5.0.0-alpha

[mysqll
max_allowed_packet=16777216
Or:
[mysql]
max_allowed_packet=16M
If you like, underscores in a variable name can be specified as dashes.

Prior to MySQL 4.0.2, program variable names are not recognized as option names. Instead,
use the ——set-variable option to assign a value to a variable:

shell> mysql --set-variable=max_allowed_packet=16777216
shell> mysql --set-variable=max_allowed_packet=16M

In an option file, omit the leading dashes:

[mysqll
set-variable

max_allowed_packet=16777216

[mysql]
set-variable

max_allowed_packet=16M

With --set-variable, underscores in variable names cannot be given as dashes for versions
of MySQL older than 4.0.2.

The --set-variable option is still recognized in MySQL 4.0.2 and up, but is deprecated.

Some server variables can be set at runtime. For details, see Section 5.2.3.1 [Dynamic
System Variables|, page 274.

Chapter 5: Database Administration 229

5 Database Administration

This chapter covers topics that deal with administering a MySQL installation, such as
configuring the server, managing user accounts, and performing backups.

5.1 The MySQL Server and Server Startup Scripts

The MySQL server, mysqld, is the main program that does most of the work in a MySQL
installation. The server is accompanied by several related scripts that perform setup oper-
ations when you install MySQL or that are helper programs to assist you in starting and
stopping the server.

This section provides an overview of the server and related programs, and information about
server startup scripts. Information about configuring the server itself is given in Section 5.2
[Configuring MySQL], page 239.

5.1.1 Overview of the Server-Side Scripts and Utilities

All MySQL programs take many different options. However, every MySQL program pro-
vides a —-help option that you can use to get a description of the program’s options. For
example, try mysqld --help.

You can override default options for all standard programs by specifying options on the
command line or in an option file. Section 4.3 [Program Options]|, page 221.

The following list briefly describes the MySQL server and server-related programs:

mysqld The SQL daemon (that is, the MySQL server). To use client programs, this pro-
gram must be running, because clients gain access to databases by connecting
to the server. See Section 5.2 [Configuring MySQL], page 239.

mysqld-max
A version of the server that includes additional features. See Section 5.1.2
[mysqld-max]|, page 230.

mysqld_safe
A server startup script. mysqld_safe attempts to start mysqld-max if it exists,
and mysqld otherwise. See Section 5.1.3 [mysqld_safe], page 232.

mysql.server
A server startup script. This script is used on systems that use run directories
containing scripts that start system services for particular run levels. It invokes
mysqld_safe to start the MySQL server. See Section 5.1.4 [mysql.server],
page 235.

mysqld_multi
A server startup script that can start or stop multiple servers installed on the
system. See Section 5.1.5 [mysqld_multi], page 235.

mysql_install_db
This script creates the MySQL grant tables with default privileges. It is usually
executed only once, when first installing MySQL on a system.

230 MySQL Technical Reference for Version 5.0.0-alpha

mysql_fix_privilege_tables
This script is used after an upgrade install operation, to update the grant tables
with any changes that have been made in newer versions of MySQL.

There are several other programs that also are run on the server host:

myisamchk
A utility to describe, check, optimize, and repair MyISAM tables. myisamchk is
described in Section 5.7.2 [Table maintenance], page 335.

make_binary_distribution
This program makes a binary release of a compiled MySQL. This could be sent
by FTP to ‘/pub/mysql/upload/’ on ftp.mysql.com for the convenience of
other MySQL users.

mysqlbug The MySQL bug reporting script. It can be used to send a bug report to the
MySQL mailing list. (You can also visit http://bugs.mysql.com/ to file a bug
report online.)

5.1.2 The mysqld-max Extended MySQL Server

A MySQL-Max server is a version of the mysqld MySQL server that has been built to
include additional features.

The distribution to use depends on your platform:

e For Windows, MySQL binary distributions include both the standard server
(mysqld.exe) and the MySQL-Max server (mysqld-max.exe), so you need not
get a special distribution. Just use a regular Windows distribution, available at
http://dev.mysql.com/downloads/mysql-4.0.html. See Section 2.2.1 [Windows
installation], page 78.

e For Linux, if you install MySQL using RPM distributions, use the regular MySQL-
server RPM first to install a standard server named mysqld. Then use the MySQL-Max
RPM to install a server named mysqld-max. The MySQL-Max RPM presupposes that
you have already installed the regular server RPM. See Section 2.2.2 [Linux-RPM],
page 90 for more information on the Linux RPM packages.

e All other MySQL-Max distributions contain a single server that is named mysqld but
that has the additional features included.

You can find the MySQL-Max binaries on the MySQL AB Web site at
http://dev.mysql.com/downloads/mysql-4.0.html.

MySQL AB builds the MySQL-Max servers by using the following configure options:

--with-server-suffix=-max
This option adds a —max suffix to the mysqld version string.

-—-with-innodb
This option enables support for the InnoDB storage engine. MySQL-Max servers
always include InnoDB support, but this option actually is needed only for
MySQL 3.23. From MySQL 4 on, InnoDB is included by default in binary dis-
tributions, so you do not need a MySQL-Max server to obtain InnoDB support.

Chapter 5: Database Administration 231

--with-bdb
This option enables support for the Berkeley DB (BDB) storage engine.

CFLAGS=-DUSE_SYMDIR
This define enables symbolic link support for Windows.

MySQL-Max binary distributions are a convenience for those who wish to install precom-
piled programs. If you build MySQL using a source distribution, you can build your own
Max-like server by enabling the same features at configuration time that the MySQL-Max
binary distributions are built with.

MySQL-Max servers include the BerkeleyDB (BDB) storage engine whenever possible, but
not all platforms support BDB. The following table shows which platforms allow MySQL-
Max binaries to include BDB:

o5}
o
w0
w
=
=]
=)
)
=
[l

System

AIX 4.3
HP-UX 11.0
Linux-Alpha
Linux-IA-64
Linux-Intel
Mac OS X
NetWare
SCO OSR5
Solaris-Intel
Solaris-SPARC
UnixWare
Windows/NT

To find out which storage engines your server supports, issue the following statement:
mysql> SHOW ENGINES;

Before MySQL 4.1.2, SHOW ENGINES is unavailable. Use the following statement instead and
check the value of the variable for the storage engine in which you are interested:

mysql> SHOW VARIABLES LIKE ’have_%’;

KKK ZK2Z22<2222Z

o S +
| Variable_name | Value |
o o +
have_bdb	NO
have_crypt	YES
have_innodb	YES
have_isam	NO
have_raid	NO
have_symlink	DISABLED
have_openssl	NO
have_query_cache	YES
o S +

The values in the second column indicate the server’s level of support for each feature:

Value Meaning
YES The feature is supported and is active.

232 MySQL Technical Reference for Version 5.0.0-alpha

NO The feature is not supported.
DISABLED The feature is supported but has been disabled.

A value of NO means that the server was compiled without support for the feature, so it
cannot be activated at runtime.

A value of DISABLED occurs either because the server was started with an option that
disables the feature, or because not all options required to enable it were given. In the
latter case, the host_name.err error log file should contain a reason indicating why the
option is disabled.

One situation in which you might see DISABLED occurs with MySQL 3.23 when the InnoDB
storage engine is compiled in. In MySQL 3.23, you must supply at least the innodb_
data_file_path option at runtime to set up the InnoDB tablespace. Without this option,
InnoDB disables itself. See Section 16.3 [InnoDB in MySQL 3.23], page 788. You can specify
configuration options for the BDB storage engine, too, but BDB will not disable itself if you
do not provide them. See Section 15.4.3 [BDB start], page 782.

You might also see DISABLED for the InnoDB, BDB, or ISAM storage engines if the server
was compiled to support them, but was started with the ——-skip-innodb, --skip-bdb, or
--skip-isam options at runtime.

As of Version 3.23, all MySQL servers support MyISAM tables, because MyISAM is the default
storage engine.

5.1.3 The mysqld_safe Server Startup Script

mysqld_safe is the recommended way to start a mysqld server on Unix and NetWare.
mysqld_safe adds some safety features such as restarting the server when an error occurs
and logging runtime information to an error log file. NetWare-specific behaviors are listed
later in this section.

Note: Before MySQL 4.0, mysqld_safe is named safe_mysqld. To preserve backward
compatibility, MySQL binary distributions for some time will include safe_mysqld as a
symbolic link to mysqld_safe.

By default, mysqld_safe tries to start an executable named mysqld-max if it exists, or
mysqld otherwise. Be aware of the implications of this behavior:

e On Linux, the MySQL-Max RPM relies on this mysqld_safe behavior. The RPM installs
an executable named mysqld-max, which causes mysqld_safe to automatically use that
executable from that point on.

e If you install a MySQL-Max distribution that includes a server named mysqld-max,
then upgrade later to a non-Max version of MySQL, mysqld_safe will still attempt to
run the old mysqld-max server. If you perform such an upgrade, you should manually
remove the old mysqld-max server to ensure that mysqld_safe runs the new mysqld
server.

To override the default behavior and specify explicitly which server you want to run, specify
a --mysqld or --mysqld-version option to mysqld_safe.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.2.1
[Server options|, page 239.

Chapter 5: Database Administration 233

All options specified to mysqld_safe on the command line are passed to mysqld. If you
want to use any options that are specific to mysqld_safe and that mysqld doesn’t support,
do not specify them on the command line. Instead, list them in the [mysqld_safe] group
of an option file. See Section 4.3.2 [Option files], page 223.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections
in option files. For backward compatibility, it also reads [safe_mysqld] sections, although
you should rename such sections to [mysqld_safe] when you begin using MySQL 4.0 or
later.

mysqld_safe supports the following options:

--basedir=path
The path to the MySQL installation directory.

--core-file-size=size
The size of the core file mysqld should be able to create. The option value is
passed to ulimit -c.

--datadir=path
The path to the data directory.

--defaults-extra-file=path
The name of an option file to be read in addition to the usual option files.

--defaults-file=path
The name of an option file to be read instead of the usual option files.

--err-log=path
The old form of the -~log-error option, to be used before MySQL 4.0.

--ledir=path
The path to the directory containing the mysqld program. Use this option to
explicitly indicate the location of the server.

--log-error=path
Write the error log to the given file. See Section 5.9.1 [Error log], page 361.

--mysqld=prog_name
The name of the server program (in the ledir directory) that you want to start.
This option is needed if you use the MySQL binary distribution but have the
data directory outside of the binary distribution.

--mysqld-version=suffix
This option is similar to the —-mysqld option, but you specify only the suffix
for the server program name. The basename is assumed to be mysqld. For ex-
ample, if you use -~-mysqld-version=max, mysqld_safe will start the mysqld-
max program in the ledir directory. If the argument to —-mysqld-version is
empty, mysqld_safe uses mysqld in the ledir directory.

--nice=priority
Use the nice program to set the server’s scheduling priority to the given value.
This option was added in MySQL 4.0.14.

--no-defaults
Do not read any option files.

234 MySQL Technical Reference for Version 5.0.0-alpha

--open-files-limit=count
The number of files mysqld should be able to open. The option value is passed
to ulimit -n. Note that you need to start mysqld_safe as root for this to
work properly!

--pid-file=path
The path to the process ID file.

--port=port_num
The port number to use when listening for TCP/IP connections.

--socket=path
The Unix socket file to use for local connections.

-—timezone=zone
Set the TZ time zone environment variable to the given option value. Consult
your operating system documentation for legal time zone specification formats.

--user={user_name | user_id}
Run the mysqld server as the user having the name user_name or the numeric
user ID user_id. (“User” in this context refers to a system login account, not a
MySQL user listed in the grant tables.)

The mysqld_safe script is written so that it normally can start a server that was installed
from either a source or a binary distribution of MySQL, even though these types of distribu-
tions typically install the server in slightly different locations. (See Section 2.1.5 [Installation
layouts|, page 76.) mysqld_safe expects one of the following conditions to be true:

e The server and databases can be found relative to the directory from which mysqld_
safe is invoked. For binary distributions, mysqld_safe looks under its working direc-
tory for ‘bin’ and ‘data’ directories. For source distributions, it looks for ‘libexec’
and ‘var’ directories. This condition should be met if you execute mysqld_safe from
your MySQL installation directory (for example, ‘/usr/local/mysql’ for a binary dis-
tribution).

o If the server and databases cannot be found relative to the working directory,
mysqld_safe attempts to locate them by absolute pathnames. Typical locations are
‘/usr/local/libexec’ and ‘/usr/local/var’. The actual locations are determined
from the values configured into the distribution at the time it was built. They should
be correct if MySQL is installed in the location specified at configuration time.

Because mysqld_safe will try to find the server and databases relative to its own working
directory, you can install a binary distribution of MySQL anywhere, as long as you run
mysqld_safe from the MySQL installation directory:

shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, you can
specify the —-ledir and --datadir options to indicate the directories in which the server
and databases are located on your system.

Normally, you should not edit the mysqld_safe script. Instead, configure mysqld_safe

by using command-line options or options in the [mysqld_safe] section of a ‘my.cnf’
option file. In rare cases, it might be necessary to edit mysqld_safe to get it to start the

Chapter 5: Database Administration 235

server properly. However, if you do this, your modified version of mysqld_safe might be
overwritten if you upgrade MySQL in the future, so you should make a copy of your edited
version that you can reinstall.

On NetWare, mysqld_safe is a NetWare Loadable Module (NLM) that is ported from the
original Unix shell script. It does the following:

1. Runs a number of system and option checks.

Runs a check on MyISAM and ISAM tables.

Provides a screen presence for the MySQL server.

Starts mysqld, monitors it, and restarts it if it terminates in error.

Sends error messages from mysqld to the ‘host_name.err’ file in the data directory.

SR AN el S

Sends mysqld_safe screen output to the ‘host_name.safe’ file in the data directory.

5.1.4 The mysql.server Server Startup Script

MySQL distributions on Unix include a script named mysql.server. It can be used on
systems such as Linux and Solaris that use System V-style run directories to start and stop
system services. It is also used by the Mac OS X Startup Item for MySQL.

mysql.server can be found in the ‘support-files’ directory under your MySQL installa-
tion directory or in a MySQL source tree.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server
script will already have been installed in the ‘/etc/init.d’ directory with the name ‘mysql’.
You need not install it manually. See Section 2.2.2 [Linux-RPM], page 90 for more infor-
mation on the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name
such as mysqld.

If you install MySQL from a source distribution or using a binary distribution format that
does not install mysql.server automatically, you can install it manually. Instructions are
provided in Section 2.4.2.2 [Automatic start], page 124.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option
files. (For backward compatibility, it also reads [mysql_server] sections, although you
should rename such sections to [mysql.server] when you begin using MySQL 4.0 or
later.)

5.1.5 The mysqld_multi Program for Managing Multiple MySQL
Servers

mysqld_multi is meant for managing several mysqld processes that listen for connections
on different Unix socket files and TCP/IP ports. It can start or stop servers, or report their
current status.

The program searches for groups named [mysqld#] in ‘my.cnf’ (or in the file named by
the —-config-file option). # can be any positive integer. This number is referred to in
the following discussion as the option group number, or GNR. Group numbers distinguish
option groups from one another and are used as arguments to mysqld_multi to specify

236 MySQL Technical Reference for Version 5.0.0-alpha

which servers you want to start, stop, or obtain a status report for. Options listed in
these groups are the same that you would use in the [mysqld] group used for starting
mysqld. (See, for example, Section 2.4.2.2 [Automatic start], page 124.) However, when
using multiple servers it is necessary that each one use its own value for options such as the
Unix socket file and TCP/IP port number. For more information on which options must
be unique per server in a multiple-server environment, see Section 5.10 [Multiple servers],
page 367.

To invoke mysqld_multi, use the following syntax:
shell> mysqld_multi [options] {start|stopl|report} [GNR[,GNR]...]

start, stop, and report indicate which operation you want to perform. You can perform
the designated operation on a single server or multiple servers, depending on the GNR list
that follows the option name. If there is no list, mysqld_multi performs the operation for
all servers in the option file.

Each GNR value represents an option group number or range of group numbers. The value
should be the number at the end of the group name in the option file. For example, the
GNR for a group named [mysqld17] is 17. To specify a range of numbers, separate the
first and last numbers by a dash. The GNR value 10-13 represents groups [mysqldi10]
through [mysqld13]. Multiple groups or group ranges can be specified on the command
line, separated by commas. There must be no whitespace characters (spaces or tabs) in the
GNR list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:
shell> mysqld_multi start 17

This command stops several servers, using option groups [mysql8] and [mysqld10] through
[mysqldi13]:

shell> mysqld_multi start 8,10-13
For an example of how you might set up an option file, use this command:
shell> mysqld_multi --example
mysqld_multi supports the following options:
-—config-file=name
Specify the name of an alternative option file. This affects where mysqld_multi
looks for [mysqld#] option groups. Without this option, all options are read
from the usual ‘my.cnf’ file. The option does not affect where mysqld_multi

reads its own options, which are always taken from the [mysqld_multi] group
in the usual ‘my.cnf’ file.

--example
Display a sample option file.

--help Display a help message and exit.

--log=name
Specify the name of the log file. If the file exists, log output is appended to it.

--mysqladmin=prog_name
The mysqladmin binary to be used to stop servers.

Chapter 5: Database Administration 237

--mysqld=prog_name
The mysqld binary to be used. Note that you can specify mysqld_safe as the
value for this option also. The options are passed to mysqld. Just make sure
that you have the directory where mysqld is located in your PATH environment
variable setting or fix mysqld_safe.

--no-log Print log information to stdout rather than to the log file. By default, output
goes to the log file.

--password=password
The password of the MySQL account to use when invoking mysqladmin. Note
that the password value is not optional for this option, unlike for other MySQL
programs.

--tcp-ip Connect to each MySQL server via the TCP/IP port instead of the Unix socket
file. (If a socket file is missing, the server might still be running, but accessible
only via the TCP/IP port.) By default, connections are made using the Unix
socket file. This option affects stop and report operations.

--user=user_name
The username of the MySQL account to use when invoking mysqladmin.

--version
Display version information and exit.

Some notes about mysqld_multi:

e Make sure that the MySQL account used for stopping the mysqld servers (with the
mysqladmin program) has the same username and password for each server. Also,
make sure that the account has the SHUTDOWN privilege. If the servers that you want to
manage have many different usernames or passwords for the administrative accounts,
you might want to create an account on each server that has the same username and
password. For example, you might set up a common multi_admin account by executing
the following commands for each server:

shell> mysql -u root -S /tmp/mysql.sock -proot_password
mysql> GRANT SHUTDOWN ON *.=*
-> TO ’multi_admin’@’localhost’ IDENTIFIED BY ’multipass’;

See Section 5.5.2 [Privileges], page 292. You will have to do this for each mysqld server.
Change the connection parameters appropriately when connecting to each one. Note
that the host part of the account name must allow you to connect as multi_admin
from the host where you want to run mysqld_multi.

e The —-pid-file option is very important if you are using mysqld_safe to start mysqld
(for example, --mysqld=mysqld_safe) Every mysqld should have its own process ID
file. The advantage of using mysqld_safe instead of mysqld is that mysqld_safe
“guards” its mysqld process and will restart it if the process terminates due to a signal
sent using kill -9, or for other reasons, such as a segmentation fault. Please note
that the mysqld_safe script might require that you start it from a certain place. This
means that you might have to change location to a certain directory before running
mysqld_multi. If you have problems starting, please see the mysqld_safe script.
Check especially the lines:

238 MySQL Technical Reference for Version 5.0.0-alpha

MY_PWD=‘pwd*
Check if we are starting this relative (for the binary release)
if test -d $MY_PWD/data/mysql -a -f ./share/mysql/english/errmsg.sys -a \}j
-x ./bin/mysqld
See Section 5.1.3 [mysqld_safe], page 232. The test performed by these lines should
be successful, or you might encounter problems.

e The Unix socket file and the TCP/IP port number must be different for every mysqld.

e You might want to use the ——user option for mysqld, but in order to do this you need
to run the mysqld_multi script as the Unix root user. Having the option in the option
file doesn’t matter; you will just get a warning, if you are not the superuser and the
mysqld processes are started under your own Unix account.

e Important: Make sure that the data directory is fully accessible to the Unix account
that the specific mysqld process is started as. Do mot use the Unix root account for
this, unless you know what you are doing.

e Most important: Before using mysqld_multi be sure that you understand the meanings
of the options that are passed to the mysqld servers and why you would want to have
separate mysqld processes. Beware of the dangers of using multiple mysqld servers
with the same data directory. Use separate data directories, unless you know what you
are doing. Starting multiple servers with the same data directory will not give you
extra performance in a threaded system. See Section 5.10 [Multiple servers|, page 367.

The following example shows how you might set up an option file for use with mysqld_
multi. The first and fifth [mysqld#] group were intentionally left out from the example to
illustrate that you can have “gaps” in the option file. This gives you more flexibility. The
order in which the mysqld programs are started or stopped depends on the order in which
they appear in the option file.

This file should probably be in your home dir (~/.my.cnf)
or /etc/my.cnf
Version 2.1 by Jani Tolonen

[mysqld_multi]

mysqld = /usr/local/bin/mysqld_safe
mysqladmin = /usr/local/bin/mysqladmin

user = multi_admin

password = multipass

[mysqld2]

socket = /tmp/mysql.sock2

port = 3307

pid-file = /usr/local/mysql/var2/hostname.pid2
datadir = /usr/local/mysql/var2

language = /usr/local/share/mysql/english

user = john

Chapter 5: Database Administration

239

[mysqld3]

socket = /tmp/mysql.sock3

port = 3308

pid-file = /usr/local/mysql/var3/hostname.pid3
datadir = /usr/local/mysql/var3

language = /usr/local/share/mysql/swedish

user = monty

[mysqld4]

socket = /tmp/mysql.sock4

port = 3309

pid-file = /usr/local/mysql/var4/hostname.pid4
datadir = /usr/local/mysql/var4d

language = /usr/local/share/mysql/estonia
user = tonu

[mysqld6]

socket = /tmp/mysql.sock6

port = 3311

pid-file = /usr/local/mysql/var6/hostname.pid6
datadir = /usr/local/mysql/var6

language = /usr/local/share/mysql/japanese
user = jani

See Section 4.3.2 [Option files|, page 223.
5.2 Configuring the MySQL Server

This section discusses MySQL server configuration topics:
e Startup options that the server supports
e How to set the server SQL mode
e Server system variables

e Server status variables

5.2.1 mysqld Command-Line Options

When you start the mysqld server, you can specify program options using any of the methods
described in Section 4.3 [Program Options]|, page 221. The most common methods are to
provide options in an option file or on the command line. However, in most cases it is
desirable to make sure that the server uses the same options each time it runs. The best
way to ensure this is to list them in an option file. See Section 4.3.2 [Option files], page 223.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options
from the [mysqld], [server], [mysqld_safel], and [safe_mysqld] groups. mysql.server
reads options from the [mysqld] and [mysql.server] groups. An embedded MySQL server
usually reads options from the [server], [embedded], and [xxxxx_SERVER] groups, where
xxxxx is the name of the application into which the server is embedded.

240 MySQL Technical Reference for Version 5.0.0-alpha

mysqld accepts many command-line options. For a list, execute mysqld —--help. Before
MySQL 4.1.1, --help prints the full help message. As of 4.1.1, it prints a brief message; to
see the full list, use mysqld --verbose --help.

The following list shows some of the most common server options. Additional options are
described elsewhere:

e Options that affect security: See Section 5.4.3 [Privileges options], page 290.
e SSL-related options: See Section 5.6.7.5 [SSL options], page 332.

e Binary log control options: See Section 5.9.4 [Binary log], page 362.

e Replication-related options: See Section 6.8 [Replication Options], page 396.

e Options specific to particular storage engines: See Section 15.1.1 [MyISAM start],
page 769, Section 15.4.3 [BDB start]|, page 782, Section 16.5 [InnoDB start], page 793.

You can also set the value of a server system variable by using the variable name as an
option, as described later in this section.

--help, -7
Display a short help message and exit. Before MySQL 4.1.1, --help displays
the full help message. As of 4.1.1, it displays an abbreviated message only. Use
both the --verbose and --help options to see the full message.

--ansi Use standard SQL syntax instead of MySQL syntax. See Section 1.8.3 [ANSI
mode], page 41. For more precise control over the server SQL mode, use the
--sql-mode option instead.

--basedir=path, -b path
The path to the MySQL installation directory. All paths are usually resolved
relative to this.

--big-tables
Allow large result sets by saving all temporary sets in files. This option prevents
most “table full” errors, but also slows down queries for which in-memory tables
would suffice. Since MySQL 3.23.2, the server is able to handle large result sets
automatically by using memory for small temporary tables and switching to
disk tables where necessary.

—-bind-address=IP
The IP address to bind to.

—--console
Write the error log messages to stderr/stdout even if -—log-error is specified.
On Windows, mysqld will not close the console screen if this option is used.

—--character-sets-dir=path
The directory where character sets are installed. See Section 5.8.1 [Character
sets], page 354.

—--chroot=path
Put the mysqld server in a closed environment during startup by using the
chroot () system call. This is a recommended security measure as of MySQL
4.0. (MySQL 3.23 is not able to provide a chroot() jail that is 100% closed.)
Note that use of this option somewhat limits LOAD DATA INFILE and SELECT
... INTO OUTFILE.

Chapter 5: Database Administration 241

--core-file
Write a core file if mysqld dies. For some systems, you must also specify the
--core-file-size option to mysqld_safe. See Section 5.1.3 [mysqld_safe],
page 232. Note that on some systems, such as Solaris, you will not get a core
file if you are also using the -—user option.

--datadir=path, -h path
The path to the data directory.

--debug[=debug_options], -# [debug_options]
If MySQL is configured with --with-debug, you can use this option to
get a trace file of what mysqld is doing. The debug_options string often is
’d:t:o,file_name’. See Section D.1.2 [Making trace files], page 1279.

-—-default-character-set=charset
Use charset as the default character set. See Section 5.8.1 [Character sets],
page 354.

-—-default-collation=collation
Use collation as the default collation. This option is available as of MySQL
4.1.1. See Section 5.8.1 [Character sets], page 354.

--default-storage-engine=type
This option is a synonym for --default-table-type. It is available as of
MySQL 4.1.2.

--default-table-type=type
Set the default table type for tables. See Chapter 15 [Table types], page 766.

--default-time-zone=type
Set the default server time zone. This option sets the global time_zone system
variable. If this option is not given, the default time zone will be the same
as the system time zone (given by the value of the system_time_zone system
variable. This option is available as of MySQL 4.1.3.

--delay-key-write[= OFF | ON | ALL]

How the DELAYED KEYS option should be used. Delayed key writing causes
key buffers not to be flushed between writes for MyISAM tables. OFF disables
delayed key writes. ON enables delayed key writes for those tables that were
created with the DELAYED KEYS option. ALL delays key writes for all MyISAM
tables. Available as of MySQL 4.0.3. See Section 7.5.2 [Server parameters],
page 456. See Section 15.1.1 [MyISAM start], page 769.

Note: If you set this variable to ALL, you should not use MyISAM tables
from within another program (such as from another MySQL server or with
myisamchk) when the table is in use. Doing so will lead to index corruption.

--delay-key-write-for-all-tables
Old form of --delay-key-write=ALL for use prior to MySQL 4.0.3. As of 4.0.3,
use --delay-key-write instead.

--des-key-file=file_name
Read the default keys used by DES_ENCRYPT() and DES_DECRYPT() from this
file.

242 MySQL Technical Reference for Version 5.0.0-alpha

--enable-named-pipe
Enable support for named pipes. This option applies only on Windows NT,
2000, and XP systems, and can be used only with the mysqld-nt and mysqld-
max-nt servers that support named pipe connections.

—--exit-info[=flags], -T [flags]
This is a bit mask of different flags you can use for debugging the mysqld server.
Do not use this option unless you know exactly what it does!

--external-locking
Enable system locking. Note that if you use this option on a system on which
lockd does not fully work (as on Linux), you will easily get mysqld to deadlock.
This option previously was named --enable-locking.

Note: If you use this option to enable updates to MyISAM tables from many
MySQL processes, you have to ensure that these conditions are satisfied:

e You should not use the query cache for queries that use tables that are
updated by another process.

e You should not use --delay-key-write=ALL or DELAY_KEY_WRITE=1 on
any shared tables.

The easiest way to ensure this is to always use --external-locking together
with --delay-key-write=0FF --query-cache-size=0.

(This is not done by default because in many setups it’s useful to have a mixture
of the above options.)

--flush Flush all changes to disk after each SQL statement. Normally MySQL does a
write of all changes to disk only after each SQL statement and lets the operating
system handle the synching to disk. See Section A.4.2 [Crashing], page 1080.

—-—init-file=file
Read SQL statements from this file at startup. Each statement must be on a
single line and should not include comments.

--innodb-safe-binlog
Adds consistency guarantees between the content of InnoDB tables and the
binary log. See Section 5.9.4 [Binary log], page 362.

--language=lang name, -L lang_name
Client error messages in given language. lang_name can be given as the lan-
guage name or as the full pathname to the directory where the language files
are installed. See Section 5.8.2 [Languages], page 356.

--log[=file], -1 [file]
Log connections and queries to this file. See Section 5.9.2 [Query log], page 361.
If you don’t specify a filename, MySQL will use host_name.log as the filename.

--log-bin=[file]
The binary log file. Log all queries that change data to this file. Used for
backup and replication. See Section 5.9.4 [Binary log|, page 362. If you don’t
specify a filename, MySQL will use host_name-bin as the filename.

Chapter 5: Database Administration 243

—--log-bin-index[=file]
The index file for binary log filenames. See Section 5.9.4 [Binary log], page 362.
If you don’t specify a filename, MySQL will use host_name-bin.index as the
filename.

--log-error[=filel
Log errors and startup messages to this file. See Section 5.9.1 [Error log],
page 361. If you don’t specify a filename, MySQL will use host_name.err as
the filename.

--log-isam[=file]
Log all ISAM/MyISAM changes to this file (used only when debugging
ISAM/MyISAM).

--log-long-format

Log some extra information to the log files (update log, binary update log,
and slow queries log, whatever log has been activated). For example, username
and timestamp are logged for queries. If you are using --log-slow-queries
and --log-long-format, queries that are not using indexes also are logged to
the slow query log. Note that ——log-long-format is deprecated as of MySQL
version 4.1, when --log-short-format was introduced (the long log format is
the default setting since version 4.1). Also note that starting with MySQL 4.1,
the --log-queries-not-using-indexes option is available for the purpose of
logging queries that do not use indexes to the slow query log.

--log-queries-not-using-indexes
If you are using this option with --log-slow-queries, then queries that are
not using indexes also are logged to the slow query log. This option is available
as of MySQL 4.1. See Section 5.9.5 [Slow query log], page 366.

--log-short-format
Log less information to the log files (update log, binary update log, and slow
queries log, whatever log has been activated). For example, username and
timestamp are not logged for queries. This option was introduced in MySQL
4.1.

--log-slow-queries[=file]
Log all queries that have taken more than long_query_time seconds to execute
to this file. See Section 5.9.5 [Slow query log], page 366. Note that the default
for the amount of information logged has changed in MySQL 4.1. See the
--log-long-format and --log-short-format options for details.

--log-update[=file]
Log updates to file# where # is a unique number if not given. See Section 5.9.3
[Update log], page 362. The update log is deprecated and is removed in MySQL
5.0.0; you should use the binary log instead (--log-bin). See Section 5.9.4
[Binary log], page 362. Starting from version 5.0.0, using --log-update will
just turn on the binary log instead (see Section C.1.3 [News-5.0.0], page 1111).

--log-warnings, -W
Print out warnings such as Aborted connection... to the error log. Enabling
this option is recommended, for example, if you use replication (you will get

244

MySQL Technical Reference for Version 5.0.0-alpha

more information about what is happening, such as messages about network
failures and reconnections). This option is enabled by default as of MySQL
4.0.19 and 4.1.2; to disable it, use --skip-log-warnings. If you want all
warnings to be logged, use —log-warnings=2. This will log ’Aborted connections’
also. See Section A.2.10 [Communication errors], page 1072.

This option was named --warnings before MySQL 4.0.

--low-priority-updates

—--memlock

Table-modifying operations (INSERT, REPLACE, DELETE, UPDATE) will have lower
priority than selects. This can also be done via {INSERT | REPLACE | DELETE
| UPDATE} LOW_PRIORITY ... to lower the priority of only one query, or by
SET LOW_PRIORITY_UPDATES=1 to change the priority in one thread. See Sec-
tion 7.3.2 [Table locking], page 441.

Lock the mysqld process in memory. This works on systems such as Solaris that
support the mlockall() system call. This might help if you have a problem
where the operating system is causing mysqld to swap on disk. Note that use
of this option requires that you run the server as root, which is normally not
a good idea for security reasons.

--myisam-recover [=option[,option...]]]

Set the MyISAM storage engine recovery mode. The option value is any combina-
tion of the values of DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple
values, separate them by commas. You can also use a value of "" to disable this
option. If this option is used, mysqld will, when it opens a MyISAM table, open
check whether the table is marked as crashed or wasn’t closed properly. (The
last option works only if you are running with --skip-external-locking.) If
this is the case, mysqld will run a check on the table. If the table was corrupted,
mysqld will attempt to repair it.

The following options affect how the repair works:

Option Description

DEFAULT The same as not giving any option to —-myisam-recover.

BACKUP If the data file was changed during recovery, save a backup of
the ‘tbl_name.MYD’ file as ‘tbl_name-datetime.BAK’ .

FORCE Run recovery even if we will lose more than one row from the
‘.MYD’ file.

QUICK Don’t check the rows in the table if there aren’t any delete
blocks.

Before a table is automatically repaired, MySQL will add a note about this in
the error log. If you want to be able to recover from most problems without
user intervention, you should use the options BACKUP,FORCE. This will force a
repair of a table even if some rows would be deleted, but it will keep the old
data file as a backup so that you can later examine what happened.

This option is available as of MySQL 3.23.25.

Chapter 5: Database Administration 245

--ndbcluster
If the binary includes support for the NDBCluster storage engine the default
disabling of support for the NDB storage engine can be overruled by using this
option. Using the NDBCluster storage engine is necessary for using MySQL
Cluster. See Chapter 17 [NDBCluster], page 842.

--new From version 4.0.12, the —-new option can be used to make the server behave
as 4.1 in certain respects, easing a 4.0 to 4.1 upgrade:

e TIMESTAMP is returned as a string with the format °’YYYY-MM-DD
HH:MM:SS’. See Chapter 12 [Column types|, page 554.

This option can be used to help you see how your applications will behave in
MySQL 4.1, without actually upgrading to 4.1.

--pid-file=path
The path to the process ID file used by mysqld_safe.

—--port=port_num, -P port_num
The port number to use when listening for TCP/IP connections.

--old-protocol, -o
Use the 3.20 protocol for compatibility with some very old clients. See Sec-
tion 2.5.6 [Upgrading-from-3.20], page 144.

—--one-thread
Only use one thread (for debugging under Linux). This option is available
only if the server is built with debugging enabled. See Section D.1 [Debugging
server|, page 1278.

--open-files-limit=count
To change the number of file descriptors available to mysqld. If this is not set
or set to 0, then mysqld will use this value to reserve file descriptors to use with
setrlimit (). If this value is 0 then mysqld will reserve max_connections*5 or
max_connections + table_cache*2 (whichever is larger) number of files. You
should try increasing this if mysqld gives you the error "Too many open files."

--safe-mode
Skip some optimization stages.

--safe-show-database
With this option, the SHOW DATABASES statement displays only the names of
those databases for which the user has some kind of privilege. As of MySQL
4.0.2, this option is deprecated and doesn’t do anything (it is enabled by de-
fault), because there is now a SHOW DATABASES privilege that can be used to
control access to database names on a per-account basis. See Section 5.5.3
[Privileges provided], page 296.

--safe-user-create
If this is enabled, a user can’t create new users with the GRANT statement, if the
user doesn’t have the INSERT privilege for the mysql.user table or any column
in the table.

246 MySQL Technical Reference for Version 5.0.0-alpha

--secure—auth
Disallow authentication for accounts that have old (pre-4.1) passwords. This
option is available as of MySQL 4.1.1.

--skip-bdb
Disable the BDB storage engine. This saves memory and might speed up some
operations. Do not use this option if you require BDB tables.

--skip-concurrent-insert
Turn off the ability to select and insert at the same time on MyISAM tables.
(This is to be used only if you think you have found a bug in this feature.)

--skip-delay-key-write
Ignore the DELAY_KEY_WRITE option for all tables. As of MySQL 4.0.3, you
should use --delay-key-write=0FF instead. See Section 7.5.2 [Server param-
eters], page 456.

--skip-external-locking
Don’t use system locking. To use isamchk or myisamchk, you must shut down
the server. See Section 1.2.3 [Stability], page 8. In MySQL 3.23, you can use
CHECK TABLE and REPAIR TABLE to check and repair MyISAM tables. This option
previously was named --skip-locking.

--skip-grant-tables
This option causes the server not to use the privilege system at all. This gives
everyone full access to all databases! (You can tell a running server to start
using the grant tables again by executing a mysqladmin flush-privileges or
mysqladmin reload command, or by issuing a FLUSH PRIVILEGES statement.)

--skip-host-cache
Do not use the internal hostname cache for faster name-to-IP resolution. In-
stead, query the DNS server every time a client connects. See Section 7.5.6
[DNS], page 462.

--skip-innodb
Disable the InnoDB storage engine. This saves memory and disk space and
might speed up some operations. Do not use this option if you require InnoDB
tables.

--skip-isam
Disable the ISAM storage engine. As of MySQL 4.1, ISAM is disabled by default,
so this option applies only if the server was configured with support for ISAM.
This option was added in MySQL 4.1.1.

—--skip-name-resolve
Do not resolve hostnames when checking client connections. Use only IP num-
bers. If you use this option, all Host column values in the grant tables must be
IP numbers or localhost. See Section 7.5.6 [DNS], page 462.

—--skip-ndbcluster
Disable the NDBCluster storage engine. This is disabled by default for binaries
where it is included. So this option only applies if the server was configured to
use the NDBCluster storage engine.

Chapter 5: Database Administration 247

-—-skip-networking
Don’t listen for TCP/IP connections at all. All interaction with mysqld must
be made via named pipes (on Windows) or Unix socket files (on Unix). This
option is highly recommended for systems where only local clients are allowed.
See Section 7.5.6 [DNS], page 462.

--skip-new
Don’t use new, possibly wrong routines.

--skip-symlink
This is the old form of --skip-symbolic-1links, for use before MySQL 4.0.13.

--symbolic-links, —--skip-symbolic-1links
Enable or disable symbolic link support. This option has different effects on
Windows and Unix:

e On Windows, enabling symbolic links allows you to establish a symbolic
link to a database directory by creating a directory.sym file that contains
the path to the real directory. See Section 7.6.1.3 [Windows symbolic links],
page 466.

e On Unix, enabling symbolic links means that you can link a MyISAM index
file or data file to another directory with the INDEX DIRECTORY or DATA
DIRECTORY options of the CREATE TABLE statement. If you delete or rename
the table, the files that its symbolic links point to also are deleted or
renamed. See Section 14.2.5 [CREATE TABLE], page 697.

This option was added in MySQL 4.0.13.

--skip-safemalloc
If MySQL is configured with -—with-debug=full, all MySQL programs check
for memory overruns during each memory allocation and memory freeing oper-
ation. This checking is very slow, so for the server you can avoid it when you
don’t need it by using the --skip-safemalloc option.

--skip-show-database
With this option, the SHOW DATABASES statement is allowed only to users who
have the SHOW DATABASES privilege, and the statement displays all database
names. Without this option, SHOW DATABASES is allowed to all users, but dis-
plays each database name only if the user has the SHOW DATABASES privilege or
some privilege for the database.

--skip-stack-trace
Don’t write stack traces. This option is useful when you are running mysqld
under a debugger. On some systems, you also must use this option to get a
core file. See Section D.1 [Debugging server|, page 1278.

--skip-thread-priority
Disable using thread priorities for faster response time.
—--socket=path

On Unix, this option specifies the Unix socket file to use for local connections.
The default value is ‘/tmp/mysql.sock’. On Windows, the option specifies the

248 MySQL Technical Reference for Version 5.0.0-alpha

pipe name to use for local connections that use a named pipe. The default
value is MySQL.

--sql-mode=value[,value[,value...]]
Set the SQL mode for MySQL. See Section 5.2.2 [Server SQL mode], page 249.
This option was added in 3.23.41.

-—temp-pool
This option causes most temporary files created by the server to use a small set
of names, rather than a unique name for each new file. This works around a
problem in the Linux kernel dealing with creating many new files with different
names. With the old behavior, Linux seems to “leak” memory, because it’s
being allocated to the directory entry cache rather than to the disk cache.

--transaction-isolation=level
Sets the default transaction isolation level, which can be READ-UNCOMMITTED,
READ-COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 14.4.6 [SET
TRANSACTION], page 716.

--tmpdir=path, -t path

The path of the directory to use for creating temporary files. It might be
useful if your default /tmp directory resides on a partition that is too small to
hold temporary tables. Starting from MySQL 4.1, this option accepts several
paths that are used in round-robin fashion. Paths should be separated by colon
characters (‘:”) on Unix and semicolon characters (‘;’) on Windows, NetWare,
and OS/2. If the MySQL server is acting as a replication slave, you should
not set ——tmpdir to point to a directory on a memory-based filesystem or to a
directory that is cleared when the server host restarts. A replication slave needs
some of its temporary files to survive a machine restart so that it can replicate
temporary tables or LOAD DATA INFILE operations. If files in the temporary file
directory are lost when the server restarts, replication will fail.

--user={user_name | user_id}, —u {user_name | user_id}
Run the mysqld server as the user having the name user_name or the numeric
user ID user_id. (“User” in this context refers to a system login account, not a
MySQL user listed in the grant tables.)

This option is mandatory when starting mysqld as root. The server will change
its user ID during its startup sequence, causing it to run as that particular user
rather than as root. See Section 5.4.1 [Security guidelines], page 285.

Starting from MySQL 3.23.56 and 4.0.12: To avoid a possible security hole
where a user adds a --user=root option to some ‘my.cnf’ file (thus causing
the server to run as root), mysqld uses only the first —-user option speci-
fied and produces a warning if there are multiple -—user options. Options in
‘/etc/my.cnf’ and ‘datadir/my.cnf’ are processed before command-line op-
tions, so it is recommended that you put a —-user option in ‘/etc/my.cnf’ and
specify a value other than root. The option in ‘/etc/my.cnf’ will be found
before any other ——user options, which ensures that the server runs as a user
other than root, and that a warning results if any other ——user option is found.

Chapter 5: Database Administration 249

--version, -V
Display version information and exit.

You can assign a value to a server system variable by using an option of the form --var_
name=value. For example, -—key_buffer_size=32M sets the key_buffer_size variable
to a value of 32MB.

Note that when setting a variable to a value, MySQL might automatically correct it to stay
within a given range, or adjust the value to the closest allowable value if only certain values
are allowed.

It is also possible to set variables by using --set-variable=var_name=value or -0 var_
name=value syntax. However, this syntax is deprecated as of MySQL 4.0.

You can find a full description for all variables in Section 5.2.3 [Server system variables],
page 251. The section on tuning server parameters includes information on how to optimize
them. See Section 7.5.2 [Server parameters], page 456.

You can change the values of most system variables for a running server with the SET
statement. See Section 14.5.3.1 [SET OPTION], page 730.

If you want to restrict the maximum value that a startup option can be set to with SET,
you can define this by using the —-maximum-var_name command-line option.

5.2.2 The Server SQL Mode

The MySQL server can operate in different SQL modes, and (as of MySQL 4.1) can apply
these modes differentially for different clients. This allows applications to tailor server
operation to their own requirements.

Modes define what SQL syntax MySQL should support and what kind of data validation
checks it should perform. This makes it easier to use MySQL in different environments and
to use MySQL together with other database servers.

You can set the default SQL mode by starting mysqld with the --sql-mode="modes" option.
Beginning with MySQL 4.1, you can also change the mode after startup time by setting the
sql_mode variable with a SET [SESSION|GLOBAL] sql_mode=’modes’ statement. Setting
the GLOBAL variable affects the operation of all clients that connect from that time on.
Setting the SESSION variable affects only the current client. modes is a list of different
modes separated by comma (*,’) characters. You can retrieve the current mode by issuing
a SELECT @@sql_mode statement. The default value is empty (no modes set).

The value also can be empty (--sql-mode="") if you want to reset it.
The following list describes the supported modes:

ANSTI_QUOTES
Treat ‘"’ as an identifier quote character (like the ‘¢’ quote character) and not
as a string quote character. You can still use ‘‘’ to quote identifers in ANSI
mode. With ANSI_QUOTES enabled, you cannot use double quotes to quote a
literal string, because it will be interpreted as an identifier. (New in MySQL
4.0.0.)

IGNORE_SPACE
Allow spaces between a function name and the ‘(" character. This forces all
function names to be treated as reserved words. As a result, if you want to

250 MySQL Technical Reference for Version 5.0.0-alpha

access any database, table, or column name that is a reserved word, you must
quote it. For example, because there is a USER() function, the name of the
user table in the mysql database and the User column in that table become
reserved, so you must quote them:

SELECT "User" FROM mysql.'"user";
(New in MySQL 4.0.0.)

NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERQO affects handling of AUTO_INCREMENT columns. Nor-
mally, you generate the next sequence number for the column by inserting
either NULL or O into it. NO_AUTO_VALUE_ON_ZERO suppresses this behavior for
0 so that only NULL generates the next sequence number. This mode can be
useful if 0 has been stored in a table’s AUTO_INCREMENT column. (This is not
a recommended practice, by the way.) For example, if you dump the table
with mysqldump and then reload it, normally MySQL generates new sequence
numbers when it encounters the 0 values, resulting in a table with different con-
tents than the one that was dumped. Enabling NO_AUTO_VALUE_ON_ZERO before
reloading the dump file solves this problem. As of MySQL 4.1.1, mysqldump au-
tomatically includes statements in the dump output to enable NO_AUTO_VALUE_
ON_ZERO. (New in MySQL 4.1.1.)

NO_DIR_IN_CREATE
When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY di-

rectives. This option is useful on slave replication servers. (New in MySQL
4.0.15.)

NO_FIELD_OPTIONS
Don’t print MySQL-specific column options in the output of SHOW CREATE
TABLE. This mode is used by mysqldump in portability mode. (New in MySQL
4.1.1.)

NO_KEY_OPTIONS
Don’t print MySQL-specific index options in the output of SHOW CREATE TABLE.
This mode is used by mysqldump in portability mode. (New in MySQL 4.1.1.)

NO_TABLE_OPTIONS
Don’t print MySQL-specific table options (such as ENGINE) in the output of
SHOW CREATE TABLE. This mode is used by mysqldump in portability mode.
(New in MySQL 4.1.1.)

NO_UNSIGNED_SUBTRACTION
In subtraction operations, don’t mark the result as UNSIGNED if one of the
operands is unsigned. Note that this makes UNSIGNED BIGINT not 100% usable
in all contexts. See Section 13.7 [Cast Functions], page 631. (New in MySQL
4.0.2.)

ONLY_FULL_GROUP_BY
Don’t allow queries that in the GROUP BY part refer to a not selected column.

(New in MySQL 4.0.0.)

Chapter 5: Database Administration 251

PIPES_AS_CONCAT
Treat || as a string concatenation operator (same as CONCAT()) rather than as
a synonym for OR. (New in MySQL 4.0.0.)

REAL_AS_FLOAT
Treat REAL as a synonym for FLOAT rather than as a synonym for DOUBLE. (New
in MySQL 4.0.0.)

The following special modes are provided as shorthand for combinations of mode values
from the preceding list. They are available as of MySQL 4.1.1.

ANSI Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_
SPACE, ONLY_FULL_GROUP_BY. See Section 1.8.3 [ANSI mode|, page 41.

DB2 Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_
OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

MAXDB Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_
OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

MSSQL Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_
OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

MYSQL323 Equivalent to NO_FIELD_OPTIONS.
MYSQL40 Equivalent to NO_FIELD_OPTIONS.

ORACLE Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_
OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

POSTGRESQL
Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_
OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

5.2.3 Server System Variables

The server maintains many system variables that indicate how it is configured. All of them
have default values. They can be set at server startup using options on the command line
or in option files. Most of them can be set at runtime using the SET statement.

Beginning with MySQL 4.0.3, the mysqld server maintains two kinds of variables. Global
variables affect the overall operation of the server. Session variables affect its operation for
individual client connections.

When the server starts, it initializes all global variables to their default values. These
defaults can be changed by options specified in option files or on the command line. After
the server starts, those global variables that are dynamic can be changed by connecting to
the server and issuing a SET GLOBAL var_name statement. To change a global variable, you
must have the SUPER privilege.

The server also maintains a set of session variables for each client that connects. The client’s
session variables are initialized at connect time using the current values of the corresponding
global variables. For those session variables that are dynamic, the client can change them by
issuing a SET SESSION var_name statement. Setting a session variable requires no special

252 MySQL Technical Reference for Version 5.0.0-alpha

privilege, but a client can change only its own session variables, not those of any other
client.

A change to a global variable is visible to any client that accesses that global variable.
However, it affects the corresponding session variable that is initialized from the global
variable only for clients that connect after the change. It does not affect the session variable
for any client that is already connected (not even that of the client that issues the SET
GLOBAL statement).

When setting a variable using a startup option, variable values can be given with a suffix
of K, M, or G to indicate kilobytes, megabytes, or gigabytes, respectively. For example, the
following command starts the server with a key buffer size of 16 megabytes:

mysqld --key_buffer_size=16M
Before MySQL 4.0, use this syntax instead:

mysqld --set-variable=key_buffer_size=16M
The lettercase of suffix letters does not matter; 16M and 16m are equivalent.
At runtime, use the SET statement to set system variables. In this context, suffix letters
cannot be used, but the value can take the form of an expression:

mysql> SET sort_buffer_size = 10 * 1024 * 1024;
To specify explicitly whether to set the global or session variable, use the GLOBAL or SESSION
options:

mysql> SET GLOBAL sort_buffer_size = 10 * 1024 * 1024;

mysql> SET SESSION sort_buffer_size = 10 * 1024 * 1024;
Without either option, the statement sets the session variable.

The variables that can be set at runtime are listed in Section 5.2.3.1 [Dynamic System
Variables|, page 274.

If you want to restrict the maximum value to which a system variable can be set with the
SET statement, you can specify this maximum by using an option of the form --maximum-
var_name at server startup. For example, to prevent the value of query_cache_size from
being increased to more than 32MB at runtime, use the option --maximum-query_cache_
size=32M. This feature is available as of MySQL 4.0.2.

You can view system variables and their values by using the SHOW VARIABLES statement.
See Section 10.4 [System Variables|, page 519 for more information.

mysql> SHOW VARIABLES;

T e LR et et e +
| Variable_name | Value |
o o |
| back_log | 50 |
| basedir | /usr/local/mysql I
| bdb_cache_size | 8388572 |
| bdb_home | /usr/local/mysql |
| bdb_log_buffer_size | 32768 I
| bdb_logdir | I
| bdb_max_lock | 10000 I
| | |

bdb_shared_data OFF

Chapter 5: Database Administration

bdb_tmpdir

bdb_version
binlog_cache_size
bulk_insert_buffer_size
character_set
character_sets
concurrent_insert
connect_timeout
convert_character_set
datadir
default_week_format
delay_key_write
delayed_insert_limit
delayed_insert_timeout
delayed_queue_size

flush

flush_time
ft_boolean_syntax
ft_max_word_len
ft_min_word_len
ft_query_expansion_limit
ft_stopword_file

have_bdb

have_innodb

have_isam

have_openssl
have_query_cache
have_raid

have_symlink

init_file
innodb_additional _mem_pool_size
innodb_buffer_pool_size
innodb_data_file_path
innodb_data_home_dir
innodb_fast_shutdown
innodb_file_io_threads
innodb_flush_log_at_trx_commit
innodb_flush_method
innodb_force_recovery
innodb_lock_wait_timeout
innodb_log_arch_dir
innodb_log_archive
innodb_log_buffer_size
innodb_log_file_size
innodb_log_files_in_group
innodb_log_group_home_dir
innodb_mirrored_log_groups

/tmp/

Sleepycat Software:
32768

8388608

latinl

latinl bigb czech euc_kr
ON

5

/usr/local/mysql/data/
0

ON

100

300

1000

OFF

0

+ _><()~*:llll&|
84

4

20

(built-in)
YES

YES

YES

YES

YES

NO

DISABLED

1048576
8388608
ibdatal:10M:autoextend

ON

0
50

OFF
1048576
5242880
2

-/

1

253

254

MySQL Technical Reference for Version 5.0.0-alpha

innodb_thread_concurrency
interactive_timeout
join_buffer_size
key_buffer_size
key_cache_age_threshold
key_cache_block_size
key_cache_division_limit
language
large_files_support
local_infile
locked_in_memory

log

log_bin
log_slave_updates
log_slow_queries
log_update

log_warnings
long_query_time
low_priority_updates
lower_case_table_names
max_allowed_packet
max_binlog_cache_size
max_binlog_size
max_connect_errors
max_connections
max_delayed_threads
max_error_count
max_heap_table_size
max_join_size
max_relay_log_size
max_sort_length
max_tmp_tables
max_user_connections
max_write_lock_count
myisam_max_extra_sort_file_size
myisam_max_sort_file_size
myisam_recover_options
myisam_repair_threads
myisam_sort_buffer_size
net_buffer_length
net_read_timeout
net_retry_count
net_write_timeout
open_files_limit
pid_file

port

protocol_version

8

28800
131072
16773120
300

1024

100

/usr/local/mysql/share/. ..

ON

oN

OFF

OFF

OFF

OFF

OFF

OFF

OFF

10

OFF

0

1047552
4294967295
1073741824
10

100

20

64
16777216
4294967295
0

1024

32

0
4294967295
268435456
2147483647
force

1

8388608
16384

30

10

60

1024
/usr/local/mysql/name.pid
3306

10

Chapter 5: Database Administration 255

| query_cache_limit | 1048576 |
| query_cache_size | O |
| query_cache_type | ON

| read_buffer_size | 131072 |
| read_rnd_buffer_size | 262144 |
| rpl_recovery_rank | 0

| server_id | O I
skip_external_locking	ON
skip_networking	OFF
skip_show_database	OFF
slave_net_timeout	3600
slow_launch_time	2

| socket | /tmp/mysql.sock

| sort_buffer_size | 2097116

| sql_mode | |
| table_cache | 64 |
| table_type | MYISAM I
| thread_cache_size | 3 |
| thread_stack | 131072 |
| timezone | EEST

| tmp_table_size | 33554432

| tmpdir | /tmp/:/mnt/hd2/tmp/ I
| tx_isolation | READ-COMMITTED |
| version | 4.0.4-beta

| wait_timeout | 28800 |
S S +

Most system variables are described here. Variables with no version indicated have been
present since at least MySQL 3.22. InnoDB system variables are listed at Section 16.5
[InnoDB start], page 793.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Information on tuning these variables can be found in Section 7.5.2 [Server parameters],
page 456.

ansi_mode
This is ON if mysqld was started with -—ansi. See Section 1.8.3 [ANSI mode],
page 41. This variable was added in MySQL 3.23.6 and removed in 3.23.41.
See the description for sql_mode.

back_log The number of outstanding connection requests MySQL can have. This comes
into play when the main MySQL thread gets very many connection requests
in a very short time. It then takes some time (although very little) for the
main thread to check the connection and start a new thread. The back_log
value indicates how many requests can be stacked during this short time before
MySQL momentarily stops answering new requests. You need to increase this
only if you expect a large number of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP /TP
connections. Your operating system has its own limit on the size of this queue.

256 MySQL Technical Reference for Version 5.0.0-alpha

The manual page for the Unix listen() system call should have more de-
tails. Check your OS documentation for the maximum value for this variable.
Attempting to set back_log higher than your operating system limit will be
ineffective.

basedir The MySQL installation base directory. This variable can be set with the —-
basedir option.

bdb_cache_size
The size of the buffer that is allocated for caching indexes and rows for BDB
tables. If you don’t use BDB tables, you should start mysqld with --skip-bdb
to not waste memory for this cache. This variable was added in MySQL 3.23.14.

bdb_home The base directory for BDB tables. This should be assigned the same value as
the datadir variable. This variable was added in MySQL 3.23.14.

bdb_log_buffer_size
The size of the buffer that is allocated for caching indexes and rows for BDB
tables. If you don’t use BDB tables, you should set this to 0 or start mysqld
with -—skip-bdb to not waste memory for this cache. This variable was added
in MySQL 3.23.31.

bdb_logdir
The directory where the BDB storage engine writes its log files. This variable
can be set with the —-bdb-logdir option. This variable was added in MySQL
3.23.14.

bdb_max_lock
The maximum number of locks you can have active on a BDB table (10,000 by
default). You should increase this if errors such as the following occur when
you perform long transactions or when mysqld has to examine many rows to
calculate a query:

bdb: Lock table is out of available locks
Got error 12 from ...

This variable was added in MySQL 3.23.29.

bdb_shared_data
This is ON if you are using --bdb-shared-data. This variable was added in
MySQL 3.23.29.

bdb_tmpdir
The value of the —-bdb-tmpdir option. This variable was added in MySQL
3.23.14.

bdb_version
See the description for version_bdb.

binlog_cache_size
The size of the cache to hold the SQL statements for the binary log during
a transaction. A binary log cache is allocated for each client if the server
supports any transactional storage engines and, starting from MySQL 4.1.2,
if the server has binary log enabled (--log-bin option). If you often use big,

Chapter 5: Database Administration 257

multiple-statement transactions, you can increase this to get more performance.
The Binlog_cache_use and Binlog_cache_disk_use status variables can be
useful for tuning the size of this variable. This variable was added in MySQL
3.23.29. See Section 5.9.4 [Binary log], page 362.

bulk_insert_buffer_size
MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT . ..
SELECT, INSERT ... VALUES (...), (...), ..., and LOAD DATA INFILE. This
variable limits the size of the cache tree in bytes per thread. Setting it to 0
disables this optimization. Note: This cache is used only when adding data to a
non-empty table. The default value is 8MB. This variable was added in MySQL
4.0.3. This variable previously was named myisam_bulk_insert_tree_size.

character_set
The default character set. This variable was added in MySQL 3.23.3, then re-
moved in MySQL 4.1.1 and replaced by the various character_set_xxx vari-
ables.

character_set_client
The character set for statements that arrive from the client. This variable was
added in MySQL 4.1.1.

character_set_connection
The character set used for literals that do not have a character set introducer,
for some functions, and for number-to-string conversion. This variable was

added in MySQL 4.1.1.

character_set_database
The character set used by the default database. The server sets this variable
whenever the default database changes. If there is no default database, the vari-
able has the same value as character_set_server. This variable was added
in MySQL 4.1.1.

character_set_results

The character set used for returning query results to the client. This variable
was added in MySQL 4.1.1.

character_set_server
The server default character set. This variable was added in MySQL 4.1.1.

character_set_system
The character set used by the server for storing identifiers. The value is always
utf8. This variable was added in MySQL 4.1.1.

character_sets
The supported character sets. This variable was added in MySQL 3.23.15.

collation_connection
The collation of the connection character set. This variable was added in
MySQL 4.1.1.

collation_database
The collation used by the default database. The server sets this variable when-
ever the default database changes. If there is no default database, the variable

258 MySQL Technical Reference for Version 5.0.0-alpha

has the same value as collation_server. This variable was added in MySQL
4.1.1.

collation_server
The server default collation. This variable was added in MySQL 4.1.1.

concurrent_insert
If ON (the default), MySQL allows INSERT and SELECT statements to run con-
currently for MyISAM tables that have no free blocks in the middle. You can turn
this option off by starting mysqld with --safe or ——skip-new. This variable
was added in MySQL 3.23.7.

connect_timeout
The number of seconds the mysqld server waits for a connect packet before
responding with Bad handshake.

datadir The MySQL data directory. This variable can be set with the -—datadir option.

default_week_format
The default mode value to use for the WEEK () function. This variable is available
as of MySQL 4.0.14.

delay_key_write
This option applies only to MyISAM tables. It can have one of the following
values to affect handling of the DELAY_KEY_WRITE table option that can be
used in CREATE TABLE statements.

Option Description
OFF DELAYED_KEY_WRITE is ignored.

ON MySQL honors the DELAY_KEY_WRITE option for CREATE TABLE.
This is the default value.

ALL All new opened tables are treated as if they were created with the
DELAY_KEY_WRITE option enabled.

If DELAY_KEY_WRITE is enabled, this means that the key buffer for tables
with this option are not flushed on every index update, but only when
a table is closed. This will speed up writes on keys a lot, but if you
use this feature, you should add automatic checking of all MyISAM tables
by starting the server with the --myisam-recover option (for example,
--myisam-recover=BACKUP,FORCE). = See Section 5.2.1 [Server options],
page 239 and Section 15.1.1 [MyISAM start|, page 769.

Note that ——external-locking doesn’t offer any protection against index cor-
ruption for tables that use delayed key writes.

This variable was added in MySQL 3.23.8.

delayed_insert_limit
After inserting delayed_insert_limit delayed rows, the INSERT DELAYED han-
dler thread checks whether there are any SELECT statements pending. If so, it
allows them to execute before continuing to insert delayed rows.

Chapter 5: Database Administration 259

delayed_insert_timeout
How long an INSERT DELAYED handler thread should wait for INSERT statements
before terminating.

delayed_queue_size
How many rows to queue when handling INSERT DELAYED statements. If the
queue becomes full, any client that issues an INSERT DELAYED statement will
wait until there is room in the queue again.

expire_logs_days
The number of days for automatic binary log rotation. The default is 0, which
means “no automatic rotation.” This variable was added in MySQL 4.1.0.

flush This is ON if you have started mysqld with the ——flush option. This variable
was added in MySQL 3.22.9.

flush_time
If this is set to a non-zero value, all tables will be closed every flush_time
seconds to free up resources and sync unflushed data to disk. We recommend
this option only on Windows 9x or Me, or on systems with minimal resources
available. This variable was added in MySQL 3.22.18.

ft_boolean_syntax
The list of operators supported by boolean full-text searches performed using
IN BOOLEAN MODE. This variable was added in MySQL 4.0.1. See Section 13.6.1
[Fulltext Boolean], page 626.
The default variable value is >+ -><()"*:""&|’>. The rules for changing the
value are as follows:

e Operator function is determined by position within the string.
e The replacement value must be 14 characters.

e FEach character must be an ASCII non-alphanumeric character.
e Either the first or second character must be a space.

e No duplicates are allowed except the phrase quoting operators in positions
11 and 12. These two characters are not required to be the same, but they
are the only two that may be.

e Positions 10, 13, and 14 (which by default are set to ‘:’, ‘&’, and ‘|’) are
reserved for future extensions.

ft_max_word_len
The maximum length of the word to be included in a FULLTEXT index. This
variable was added in MySQL 4.0.0.

Note: FULLTEXT indexes must be rebuilt after changing this variable. Use
REPAIR TABLE tbl_name QUICK.

ft_min_word_len
The minimum length of the word to be included in a FULLTEXT index. This
variable was added in MySQL 4.0.0.

Note: FULLTEXT indexes must be rebuilt after changing this variable. Use
REPAIR TABLE tbl_name QUICK.

260 MySQL Technical Reference for Version 5.0.0-alpha

ft_query_expansion_limit
The number of top matches to use for full-text searches performed using WITH
QUERY EXPANSION. This variable was added in MySQL 4.1.1.

ft_stopword_file
The file from which to read the list of stopwords for full-text searches. All the
words from the file are used; comments are not honored. By default, a built-in
list of stopwords is used (as defined in the ‘myisam/ft_static.c’ file). Setting
this variable to the empty string (’) disables stopword filtering. This variable
was added in MySQL 4.0.10.

Note: FULLTEXT indexes must be rebuilt after changing this variable. Use
REPAIR TABLE tbl_name QUICK.

group_concat_max_len
The maximum allowed result length for the GROUP_CONCAT() function. This
variable was added in MySQL 4.1.0.

have_archive
YES if mysqld supports ARCHIVE tables. This variable was added in MySQL
4.1.3.

have_bdb YES if mysqld supports BDB tables. DISABLED if --skip-bdb is used. This
variable was added in MySQL 3.23.30.

have_compress
Whether the z1ib compression library is available to the server. If not, the
COMPRESS () and UNCOMPRESS() functions cannot be used. This variable was
added in MySQL 4.1.1.

have_crypt
Whether the crypt () system call is available to the server. If not, the CRYPT ()
function cannot be used. This variable was added in MySQL 4.0.10.

have_geometry
Whether the server supports spatial data types. This variable was added in
MySQL 4.1.3.

have_innodb
YES if mysqld supports InnoDB tables. DISABLED if --skip-innodb is used.
This variable was added in MySQL 3.23.37.

have_isam
YES if mysqld supports ISAM tables. DISABLED if --skip-isam is used. This
variable was added in MySQL 3.23.30.

have_ndbcluster
YES if mysqld supports NDBCLUSTER tables. DISABLED if --skip-ndbcluster is
used. This variable was added in MySQL 4.1.2.

have_openssl
YES if mysqld supports SSL (encryption) of the client/server protocol. This
variable was added in MySQL 3.23.43.

Chapter 5: Database Administration 261

have_query_cache
YES if mysqld supports the query cache. This variable was added in MySQL
4.0.2.

have_raid
YES if mysqld supports the RAID option. This variable was added in MySQL
3.23.30.

have_rtree_keys
Whether RTREE indexes are available. (These are used for spatial indexed in
MyISAM tables.) This variable was added in MySQL 4.1.3.

have_symlink
Whether symbolic link support is enabled. This is required on Unix for support
of the DATA DIRECTORY and INDEX DIRECTORY table options. This variable was
added in MySQL 4.0.0.

init_connect
A string to be executed by the server for each client that connects. The string
consists of one or more SQL statements. To specify multiple statements, sepa-
rate them by semicolon characters. For example, each client begins by default
with autocommit mode enabled. There is no global server variable to specify
that autocommit should be disabled by default, but init_connect can be used
to achieve the same effect:

SET GLOBAL init_connect=’SET AUTOCOMMIT=0’;

This variable can also be set on the command line or in an option file. To set
the variable as just shown using an option file, include these lines:

[mysqld]

init_connect=’SET AUTOCOMMIT=0’
This variable was added in MySQL 4.1.2.

init_file
The name of the file specified with the ——init-file option when you start the
server. This is a file containing SQL statements that you want the server to

execute when it starts. Each statement must be on a single line and should not
include comments. This variable was added in MySQL 3.23.2.

init_slave
This variable is similar to init_connect, but is a string to be executed by a
slave server each time the SQL thread starts. The format of the string is the
same as for the init_connect variable. This variable was added in MySQL
4.1.2.

innodb_xxx
The InnoDB system variables are listed at Section 16.5 [InnoDB start], page 793.

interactive_timeout
The number of seconds the server waits for activity on an interactive connec-
tion before closing it. An interactive client is defined as a client that uses
the CLIENT_INTERACTIVE option to mysql_real_connect(). See also wait_
timeout.

262 MySQL Technical Reference for Version 5.0.0-alpha

join_buffer_size
The size of the buffer that is used for full joins (joins that do not use indexes).
Normally the best way to get fast joins is to add indexes. Increase the value of
join_buffer_size to get a faster full join when adding indexes is not possible.
One join buffer is allocated for each full join between two tables. For a complex
join between several tables for which indexes are not used, multiple join buffers
might be necessary.

key_buffer_size
Index blocks for MyISAM and ISAM tables are buffered and are shared by all
threads. key_buffer_size is the size of the buffer used for index blocks. The
key buffer is also known as the key cache.

Increase the value to get better index handling (for all reads and multiple writes)
to as much as you can afford. Using a value that is 25% of total memory on a
machine that mainly runs MySQL is quite common. However, if you make the
value too large (for example, more than 50% of your total memory) your system
might start to page and become extremely slow. MySQL relies on the operating
system to perform filesystem caching for data reads, so you must leave some
room for the filesystem cache.

For even more speed when writing many rows at the same time, use LOCK
TABLES. See Section 14.4.5 [LOCK TABLES], page 714.

You can check the performance of the key buffer by issuing a SHOW
STATUS statement and examining the Key_read_requests, Key_reads,
Key_write_requests, and Key_writes status variables. See Section 14.5.3
[SHOW|, page 729.

The Key_reads/Key_read_requests ratio should normally be less than 0.01.
The Key_writes/Key_write_requests ratio is usually near 1 if you are using
mostly updates and deletes, but might be much smaller if you tend to do updates
that affect many rows at the same time or if you are using the DELAY_KEY_WRITE
table option.

The fraction of the key buffer in use can be determined using key_buffer_
size in conjunction with the Key_blocks_used status variable and the buffer
block size. From MySQL 4.1.1 on, the buffer block size is available from the
key_cache_block_size server variable. The fraction of the buffer in use is:

(Key_blocks_used * key_cache_block_size) / key_buffer_size

Before MySQL 4.1.1, key cache blocks are 1024 bytes, so the fraction of the key
buffer in use is:

(Key_blocks_used * 1024) / key_buffer_size
See Section 7.4.6 [MyISAM key cache|, page 449.

key_cache_age_threshold
This value controls the demotion of buffers from the hot sub-chain of a key
cache to the warm sub-chain. Lower values cause demotion to happen more
quickly. The minimum value is 100. The default value is 300. This variable
was added in MySQL 4.1.1. See Section 7.4.6 [MyISAM key cache], page 449.

Chapter 5: Database Administration 263

key_cache_block_size
The size in bytes of blocks in the key cache. The default value is 1024. This
variable was added in MySQL 4.1.1. See Section 7.4.6 [MyISAM key cache],
page 449.

key_cache_division_limit
The division point between the hot and warm sub-chains of the key cache buffer
chain. The value is the percentage of the buffer chain to use for the warm sub-
chain. Allowable values range from 1 to 100. The default value is 100. This
variable was added in MySQL 4.1.1. See Section 7.4.6 [MyISAM key cache],
page 449.

language The language used for error messages.

large_file_support
Whether mysqld was compiled with options for large file support. This variable
was added in MySQL 3.23.28.

license The type of license the server has. This variable was added in MySQL 4.0.19.

local_infile
Whether LOCAL is supported for LOAD DATA INFILE statements. This variable
was added in MySQL 4.0.3.

locked_in_memory
Whether mysqld was locked in memory with --memlock. This variable was
added in MySQL 3.23.25.

log Whether logging of all queries to the general query log is enabled. See Sec-
tion 5.9.2 [Query log], page 361.

log_bin Whether the binary log is enabled. This variable was added in MySQL 3.23.14.
See Section 5.9.4 [Binary log], page 362.

log_error
The location of the error log. This variable was added in MySQL 4.0.10.

log_slave_updates
Whether updates received by a slave server from a master server should be
logged to the slave’s own binary log. Binary logging must be enabled on the
slave for this to have any effect. This variable was added in MySQL 3.23.17.
See Section 6.8 [Replication Options], page 396.

log_slow_queries
Whether slow queries should be logged. “Slow” is determined by the value of
the long_query_time variable. This variable was added in MySQL 4.0.2. See
Section 5.9.5 [Slow query log], page 366.

log_update
Whether the update log is enabled. This variable was added in MySQL 3.22.18.
Note that the binary log is preferable to the update log, which is unavailable
as of MySQL 5.0. See Section 5.9.3 [Update log], page 362.

264 MySQL Technical Reference for Version 5.0.0-alpha

log_warnings
Whether to produce additional warning messages. This variable was added in
MySQL 4.0.3. It is enabled by default as of MySQL 4.0.19 and 4.1.2.

long_query_time
If a query takes longer than this many seconds, the Slow_queries status vari-
able is incremented. If you are using the --log-slow-queries option, the
query is logged to the slow query log file. This value is measured in real time,
not CPU time, so a query that is under the threshold on a lightly loaded system
might be above the threshold on a heavily loaded one. See Section 5.9.5 [Slow
query log], page 366.

low_priority_updates
If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait
until there is no pending SELECT or LOCK TABLE READ on the affected table. This
variable previously was named sql_low_priority_updates. It was added in
MySQL 3.22.5.

lower_case_file_system
This variable indicates whether the filesystem where the data directory is lo-
cated has case insensitive filenames. ON means filenames are case insensitive,
OFF means they are case sensitive. This variable was added in MySQL 4.0.19.

lower_case_table_names
If set to 1, table names are stored in lowercase on disk and table name com-
parisons are not case sensitive. This variable was added in MySQL 3.23.6. If
set to 2 (new in 4.0.18), table names are stored as given but compared in low-
ercase. From MySQL 4.0.2, this option also applies to database names. From
4.1.1, it also applies to table aliases. See Section 10.2.2 [Name case sensitivity],
page 517.

You should not set this variable to 0 if you are running MySQL on a system that
does not have case-sensitive filenames (such as Windows or Mac OS X). New
in 4.0.18: If this variable is 0 and the filesystem on which the data directory
is located does not have case-sensitive filenames, MySQL automatically sets
lower_case_table_names to 2.

max_allowed_packet
The maximum size of one packet or any generated/intermediate string.

The packet message buffer is initialized to net_buffer_length bytes, but can
grow up to max_allowed_packet bytes when needed. This value by default is
small, to catch big (possibly wrong) packets.

You must increase this value if you are using big BLOB columns or long strings.
It should be as big as the biggest BLOB you want to use. The protocol limit for
max_allowed_packet is 16MB before MySQL 4.0 and 1GB thereafter.

max_binlog_cache_size
If a multiple-statement transaction requires more than this amount of mem-
ory, you will get the error Multi-statement transaction required more than
’max_binlog_cache_size’ bytes of storage. This variable was added in

MySQL 3.23.29.

Chapter 5: Database Administration 265

max_binlog_size
If a write to the binary log exceeds the given value, rotate the binary logs. You
cannot set this variable to more than 1GB or to less than 4096 bytes. (The
minimum before MYSQL 4.0.14 is 1024 bytes.) The default value is 1GB. This
variable was added in MySQL 3.23.33.

Note if you are using transactions: A transaction is written in one chunk to the
binary log, hence it is never split between several binary logs. Therefore, if you
have big transactions, you might see binary logs bigger than max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay
logs as well. max_relay_log_size was added in MySQL 4.0.14.

max_connect_errors
If there are more than this number of interrupted connections from a host, that
host is blocked from further connections. You can unblock blocked hosts with
the FLUSH HOSTS statement.

max_connections
The number of simultaneous client connections allowed. Increasing this value
increases the number of file descriptors that mysqld requires. See Section 7.4.8
[Table cache], page 454 for comments on file descriptor limits. Also see Sec-
tion A.2.6 [Too many connections|, page 1069.

max_delayed_threads
Don’t start more than this number of threads to handle INSERT DELAYED state-
ments. If you try to insert data into a new table after all INSERT DELAYED
threads are in use, the row will be inserted as if the DELAYED attribute wasn’t
specified. If you set this to 0, MySQL never creates a thread to handle DELAYED
rows; in effect, this disables DELAYED entirely. This variable was added in
MySQL 3.23.0.

max_error_count
The maximum number of error, warning, and note messages to be stored for
display by SHOW ERRORS or SHOW WARNINGS. This variable was added in MySQL
4.1.0.

max_heap_table_size
This variable sets the maximum size to which MEMORY (HEAP) tables are allowed
to grow. The value of the variable is used to calculate MEMORY table MAX_ROWS
values. Setting this variable has no effect on any existing MEMORY table, unless
the table is re-created with a statement such as CREATE TABLE or TRUNCATE
TABLE, or altered with ALTER TABLE. This variable was added in MySQL 3.23.0.

max_insert_delayed_threads
This variable is a synonym for max_delayed_threads. It was added in MySQL
4.0.19.

max_join_size
Don’t allow SELECT statements that probably will need to examine more than
max_join_size row combinations or are likely to do more than max_join_size
disk seeks. By setting this value, you can catch SELECT statements where keys

266

MySQL Technical Reference for Version 5.0.0-alpha

are not used properly and that would probably take a long time. Set it if your
users tend to perform joins that lack a WHERE clause, that take a long time, or
that return millions of rows.

Setting this variable to a value other than DEFAULT resets the SQL_BIG_SELECTS
value to 0. If you set the SQL_BIG_SELECTS value again, the max_join_size
variable is ignored.

If a query result already is in the query cache, no result size check is performed,
because the result has already been computed and it does not burden the server
to send it to the client.

This variable previously was named sql_max_join_size.

max_length_for_sort_data

This variable was added in MySQL 4.1.1

max_relay_log_size

If a write by a replication slave to its relay log exceeds the given value, rotate
the relay log. This variable enables you to put different size constraints on
relay logs and binary logs. However, setting the variable to 0 makes MySQL
use max_binlog_size for both binary logs and relay logs. You must set max_
relay_log_size to between 4096 bytes and 1GB (inclusive), or to 0. The
default value is 0. This variable was added in MySQL 4.0.14. See Section 6.3
[Replication Implementation Details|, page 380.

max_seeks_for_key

Limit the assumed maximum number of seeks when looking up rows based on a
key. The MySQL optimizer will assume that no more than this number of key
seeks will be required when searching for matching rows in a table by scanning a
key, regardless of the actual cardinality of the key (see Section 14.5.3.11 [SHOW
INDEX], page 739). By setting this to a low value (1007), you can force MySQL
to prefer keys instead of table scans.

This variable was added in MySQL 4.0.14.

max_sort_length

The number of bytes to use when sorting BLOB or TEXT values. Only the first
max_sort_length bytes of each value are used; the rest are ignored.

max_tmp_tables

The maximum number of temporary tables a client can keep open at the same
time. (This option doesn’t yet do anything.)

max_user_connections

The maximum number of simultaneous connections allowed to any given
MySQL account. A value of 0 means “no limit.” This variable was added in
MySQL 3.23.34.

max_write_lock_count

After this many write locks, allow some read locks to run in between. This

variable was added in MySQL 3.23.7.

Chapter 5: Database Administration 267

myisam_data_pointer_size
Default pointer size in bytes to be used by CREATE TABLE for MyISAM tables
when no MAX_ROWS option is specified. This variable cannot be less than 2 or
larger than 8. The default value is 4. This variable was added in MySQL 4.1.2.
See Section A.2.11 [Full table], page 1072.

myisam_max_extra_sort_file_size
If the temporary file used for fast MyISAM index creation would be larger than
using the key cache by the amount specified here, prefer the key cache method.
This is mainly used to force long character keys in large tables to use the slower
key cache method to create the index. This variable was added in MySQL
3.23.37. Note: The value is given in megabytes before 4.0.3 and in bytes there-
after.

myisam_max_sort_file_size
The maximum size of the temporary file MySQL is allowed to use while re-
creating a MyISAM index (dluﬁng REPAIR TABLE, ALTER TABLE, or LOAD DATA
INFILE). If the file size would be bigger than this value, the index will be
created using the key cache instead, which is slower. This variable was added
in MySQL 3.23.37. Note: The value is given in megabytes before 4.0.3 and in
bytes thereafter.

myisam_recover_options
The value of the —-myisam-recover option. This variable was added in MySQL
3.23.36.

myisam_repair_threads
If this value is greater than 1, MyISAM table indexes are created in parallel (each
index in its own thread) during the Repair by sorting process. The default
value is 1. Note: Multi-threaded repair is still alpha quality code. This variable
was added in MySQL 4.0.13.

myisam_sort_buffer_size
The buffer that is allocated when sorting MyISAM indexes during a REPATR TABLE
or when creating indexes with CREATE INDEX or ALTER TABLE. This variable was
added in MySQL 3.23.16.

named_pipe
On Windows, indicates whether the server supports connections over named
pipes. This variable was added in MySQL 3.23.50.

net_buffer_length
The communication buffer is reset to this size between queries. This should not
normally be changed, but if you have very little memory, you can set it to the
expected length of SQL statements sent by clients. If statements exceed this
length, the buffer is automatically enlarged, up to max_allowed_packet bytes.

net_read_timeout
The number of seconds to wait for more data from a connection before aborting
the read. When the server is reading from the client, net_read_timeout is the
timeout value controlling when to abort. When the server is writing to the

268

MySQL Technical Reference for Version 5.0.0-alpha

client, net_write_timeout is the timeout value controlling when to abort. See
also slave_net_timeout. This variable was added in MySQL 3.23.20.

net_retry_count

If a read on a communication port is interrupted, retry this many times before
giving up. This value should be set quite high on FreeBSD because internal
interrupts are sent to all threads. This variable was added in MySQL 3.23.7.

net_write_timeout

new

The number of seconds to wait for a block to be written to a connection before
aborting the write. See also net_read_timeout. This variable was added in
MySQL 3.23.20.

This variable is used in MySQL 4.0 to turn on some 4.1 behaviors. This variable
was added in MySQL 4.0.12.

old_passwords

Whether the server should use pre-4.1-style passwords for MySQL user ac-
counts. This variable was added in MySQL 4.1.1.

open_files_limit

The number of files that the operating system allows mysqld to open. This is
the real value allowed by the system and might be different from the value you
gave mysqld as a startup option. The value is 0 on systems where MySQL can’t
change the number of open files. This variable was added in MySQL 3.23.20.

optimizer_prune_level

Controls the heuristics applied during query optimization to prune
less-promising partial plans from the optimizer search space. A value of 0
disables heuristics so that the optimizer performs an exhaustive search. A
value off 1 causes the optimizer to prune plans based on the number of rows
retrieved by intermediate plans. This variable was added in MySQL 5.0.1.

optimizer_search_depth

pid_file

port

The maximum depth of search performed by the query optimizer. Values larger
than the number of relations in a query result in better query plans, but take
longer to generate an execution plan for a query. Values smaller than the num-
ber of relations in a query return an execution plan quicker, but the resulting
plan may be far from being optimal. If set to 0, the system automaticallys pick
a reasonable value. If set to the maximum number of tables used in a query
plus 2, the optimizer switches to the original algorithm used before MySQL
5.0.1 that performs an exhaustive search. This variable was added in MySQL
5.0.1.

The pathname of the process ID (PID) file. This variable can be set with the
--pid-file option. This variable was added in MySQL 3.23.23.

The port on which the server listens for TCP/IP connections. This variable
can be set with the ——port option.

preload_buffer_size

The size of the buffer that is allocated when preloading indexes. This variable

was added in MySQL 4.1.1.

Chapter 5: Database Administration 269

protocol_version
The version of the client/server protocol used by the MySQL server. This
variable was added in MySQL 3.23.18.

query_alloc_block_size
The allocation size of memory blocks that are allocated for objects created
during query parsing and execution. If you have problems with memory frag-
mentation, it might help to increase this a bit. This variable was added in
MySQL 4.0.16.

query_cache_limit
Don’t cache results that are bigger than this. The default value is 1MB. This
variable was added in MySQL 4.0.1.

query_cache_min_res_unit
The minimum size for blocks allocated by the query cache. The default value
is 4KB. Tuning information for this variable is given in Section 5.11.3 [Query
Cache Configuration|, page 376. This variable is present from MySQL 4.1.

query_cache_size
The amount of memory allocated for caching query results. The default value
is 0, which disables the query cache. Note that this amount of memory will
be allocated even if query_cache_type is set to 0. This variable was added in

MySQL 4.0.1.

query_cache_type
Set query cache type. Setting the GLOBAL value sets the type for all clients that
connect thereafter. Individual clients can set the SESSION value to affect their
own use of the query cache.

Option Description

0 or OFF Don’t cache or retrieve results. Note that this will not deal-
locate the query cache buffer. To do that, you should set
query_cache_size to 0.

1 or ON Cache all query results except for those that begin with
SELECT SQL_NO_CACHE.

2 or DEMAND Cache results only for queries that begin with SELECT SQL_
CACHE.

This variable was added in MySQL 4.0.3.

query_cache_wlock_invalidate
Normally, when one client acquires a WRITE lock on a MyISAM table, other clients
are not blocked from issuing queries for the table if the query results are present
in the query cache. Setting this variable to 1 causes acquisition of a WRITE lock
for a table to invalidate any queries in the query cache that refer to the table.
This forces other clients that attempt to access the table to wait while the lock
is in effect. This variable was added in MySQL 4.0.19.

270

MySQL Technical Reference for Version 5.0.0-alpha

query_prealloc_size

The size of the persistent buffer used for query parsing and execution. This
buffer is not freed between queries. If you are running complex queries, a
larger query_prealloc_size value might be helpful in improving performance,
because it can reduce the need for the server to perform memory allocation
during query execution operations. This variable was added in MySQL 4.0.16.

range_alloc_block_size

The size of blocks that are allocated when doing range optimization. This
variable was added in MySQL 4.0.16.

read_buffer_size

read_only

Each thread that does a sequential scan allocates a buffer of this size for each
table it scans. If you do many sequential scans, you might want to increase
this value. This variable was added in MySQL 4.0.3. Previously, it was named
record_buffer.

When the variable is set to ON for a replication slave server, it causes the slave
to allow no updates except from slave threads or from users with the SUPER
privilege. This can be useful to ensure that a slave server accepts no updates
from clients. This variable was added in MySQL 4.0.14.

relay_log_purge

Disables or enables automatic purging of relay logs as soon as they are not
needed any more. The default value is 1 (enabled). This variable was added in
MySQL 4.1.1.

read_rnd_buffer_size

safe_show_

When reading rows in sorted order after a sort, the rows are read through this
buffer to avoid disk seeks. Setting the variable to a large value can improve
ORDER BY performance by a lot. However, this is a buffer allocated for each
client, so you should not set the global variable to a large value. Instead,
change the session variable only from within those clients that need to run
large queries. This variable was added in MySQL 4.0.3. Previously, it was
named record_rnd_buffer.

database

Don’t show databases for which the user has no database or table privileges.
This can improve security if you’re concerned about people being able to see
what databases other users have. See also skip_show_database.

This variable was removed in MySQL 4.0.5. Instead, use the SHOW DATABASES
privilege to control access by MySQL accounts to database names.

secure_auth

If the MySQL server has been started with the ——secure-auth option, it blocks
connections from all accounts that have passwords stored in the old (pre-4.1)
format. In that case, the value of this variable is ON, otherwise it is OFF.

You should enable this option if you want to prevent all usage of passwords in
old format (and hence insecure communication over the network). This variable

was added in MySQL 4.1.1.

Chapter 5: Database Administration 271

Server startup will fail with an error if this option is enabled and the privilege
tables are in pre-4.1 format.

When used as a client-side option, the client refuses to connect to a server if
the server requires a password in old format for the client account.

server_id
The value of the ——server-id option. It is used for master and slave replication
servers. This variable was added in MySQL 3.23.26.

skip_external_locking
This is OFF if mysqld uses external locking. This variable was added in MySQL
4.0.3. Previously, it was named skip_locking.

skip_networking
This is ON if the server allows only local (non-TCP/IP) connections. On Unix,
local connections use a Unix socket file. On Windows, local connections use a
named pipe. On NetWare, only TCP/IP connections are supported, so do not
set this variable to ON. This variable was added in MySQL 3.22.23.

skip_show_database

This prevents people from using the SHOW DATABASES statement if they don’t
have the SHOW DATABASES privilege. This can improve security if you’re con-
cerned about people being able to see what databases other users have. See
also safe_show_database. This variable was added in MySQL 3.23.4. As
of MySQL 4.0.2, its effect also depends on the SHOW DATABASES privilege: If
the variable value is ON, the SHOW DATABASES statement is allowed only to users
who have the SHOW DATABASES privilege, and the statement displays all database
names. If the value is OFF, SHOW DATABASES is allowed to all users, but displays
each database name only if the user has the SHOW DATABASES privilege or some
privilege for the database.

slave_compressed_protocol
Whether to use compression of the slave/master protocol if both the slave and
the master support it. This variable was added in MySQL 4.0.3.

slave_net_timeout
The number of seconds to wait for more data from a master/slave connection
before aborting the read. This variable was added in MySQL 3.23.40.

slow_launch_time
If creating a thread takes longer than this many seconds, the server increments
the Slow_launch_threads status variable. This variable was added in MySQL
3.23.15.

socket On Unix, this is the Unix socket file used for local client connections. On
Windows, this is the name of the named pipe used for local client connections.

sort_buffer_size
Each thread that needs to do a sort allocates a buffer of this size. Increase this
value for faster ORDER BY or GROUP BY operations. See Section A.4.4 [Temporary
files|, page 1083.

272

sql_mode

MySQL Technical Reference for Version 5.0.0-alpha

The current server SQL mode. This variable was added in MySQL 3.23.41.
It can be set dynamically as of MySQL 4.1.1. See Section 5.2.2 [Server SQL
mode], page 249.

sql_slave_skip_counter

The number of events from the master that a slave server should skip. It was
added in MySQL 3.23.33.

sql_updatable_view_key

This variable was added in MySQL 5.0.1.

storage_engine

This variable is a synonym for table_type. It was added in MySQL 4.1.2.

sync_binlog

sync_frm

If positive, the MySQL server will synchronize its binary log to disk
(fdatasync()) after every sync_binlog’th write to this binary log. Note that
there is one write to the binary log per statement if in autocommit mode,
and otherwise one write per transaction. The default value is 0 which does no
sync’ing to disk. A value of 1 is the safest choice, because in case of crash you
will lose at most one statement/transaction from the binary log; but it is also
the slowest choice (unless the disk has a battery-backed cache, which makes
sync’ing very fast). This variable was added in MySQL 4.1.3.

This was added as a command-line option in MySQL 4.0.18, and is also a
settable global variable since MySQL 4.1.3. If set to 1, when a non-temporary
table is created it will synchronize its frm file to disk (fdatasync()); this is
slower but safer in case of crash. Default is 1.

system_time_zone

The server system time zone. When the server starts, it attempts to detemine
the time zone of the host machine. For example, if the TZ environment variable
is set, its value is used to set system_time_zone. This variable was added in
MySQL 4.1.3.

table_cache

table_type

The number of open tables for all threads. Increasing this value increases the
number of file descriptors that mysqld requires. You can check whether you
need to increase the table cache by checking the Opened_tables status variable.
See Section 5.2.4 [Server status variables], page 277. If the value of Opened_
tables is large and you don’t do FLUSH TABLES a lot (which just forces all
tables to be closed and reopened), then you should increase the value of the
table_cache variable.

For more information about the table cache, see Section 7.4.8 [Table cache],
page 454.

The default table type (storage engine). To set the table type at server startup,
use the —-—-default-table-type option. This variable was added in MySQL
3.23.0. See Section 5.2.1 [Server options], page 239.

Chapter 5: Database Administration 273

thread_cache_size

How many threads the server should cache for reuse. When a client disconnects,
the client’s threads are put in the cache if there aren’t already thread_cache_
size threads there. Requests for threads are satisfied by reusing threads taken
from the cache if possible, and only when the cache is empty is a new thread
created. This variable can be increased to improve performance if you have
a lot of new connections. (Normally this doesn’t give a notable performance
improvement if you have a good thread implementation.) By examining the
difference between the Connections and Threads_created status variables (see
Section 5.2.4 [Server status variables|, page 277 for details) you can see how
efficient the thread cache is. This variable was added in MySQL 3.23.16.

thread_concurrency

On Solaris, mysqld calls thr_setconcurrency () with this value. This function
allows applications to give the threads system a hint about the desired number
of threads that should be run at the same time. This variable was added in
MySQL 3.23.7.

thread_stack

time_zone

timezone

tmp_table_

tmpdir

The stack size for each thread. Many of the limits detected by the crash-me test
are dependent on this value. The default is large enough for normal operation.
See Section 7.1.4 [MySQL Benchmarks], page 416.

The current time zone. The initial value of this is >SYSTEM’ (use the value of
system_time_zone), but can be specified explicitly at server startup time with
the ——default-time-zone option. This variable was added in MySQL 4.1.3.

The time zone for the server. This is set from the TZ environment variable
when mysqld is started. The time zone also can be set by giving a -—-timezone
argument to mysqld_safe. This variable was added in MySQL 3.23.15. As of
MySQL 4.1.3, it is obsolete and has been replaced by the system_time_zone
variable. See Section A.4.6 [Timezone problems]|, page 1084.

size

If an in-memory temporary table exceeds this size, MySQL automatically con-
verts it to an on-disk MyISAM table. Increase the value of tmp_table_size if
you do many advanced GROUP BY queries and you have lots of memory.

The directory used for temporary files and temporary tables. Starting from
MySQL 4.1, this variable can be set to a list of several paths that are used in
round-robin fashion. Paths should be separated by colon characters (‘:’) on
Unix and semicolon characters (‘;’) on Windows, NetWare, and OS/2.

This feature can be used to spread the load between several physical disks. If
the MySQL server is acting as a replication slave, you should not set tmpdir
to point to a directory on a memory-based filesystem or to a directory that
is cleared when the server host restarts. A replication slave needs some of its
temporary files to survive a machine restart so that it can replicate temporary
tables or LOAD DATA INFILE operations. If files in the temporary file directory
are lost when the server restarts, replication will fail.

274 MySQL Technical Reference for Version 5.0.0-alpha

This variable was added in MySQL 3.22.4.

transaction_alloc_block_size
The allocation size of memory blocks that are allocated for storing queries that
are part of a transaction to be stored in the binary log when doing a commit.
This variable was added in MySQL 4.0.16.

transaction_prealloc_size
The size of the persistent buffer for transaction_alloc_blocks that is not
freed between queries. By making this big enough to fit all queries in a common
transaction, you can avoid a lot of malloc() calls. This variable was added in
MySQL 4.0.16.

tx_isolation
The default transaction isolation level. This variable was added in MySQL
4.0.3.

version The version number for the server.

version_bdb
The BDB storage engine version. This variable was added in MySQL 3.23.31
with the name bdb_version and renamed to version_bdb in MySQL 4.1.1.

version_comment
The configure script has a —-with-comment option that allows a comment
to be specified when building MySQL. This variable contains the value of that
comment. This variable was added in MySQL 4.0.17.

version_compile_machine
The type of machine MySQL was built on. This variable was added in MySQL
4.1.1.

version_compile_os
The type of operating system MySQL was built on. This variable was added
in MySQL 4.0.19.

wait_timeout
The number of seconds the server waits for activity on a non-interactive con-
nection before closing it.
On thread startup, the session wait_timeout value is initialized from the global
wait_timeout value or from the global interactive_timeout value, depending
on the type of client (as defined by the CLIENT_INTERACTIVE connect option to
mysql_real_connect()). See also interactive_timeout.

5.2.3.1 Dynamic System Variables

Beginning with MySQL 4.0.3, many server system variables are dynamic and can be set at
runtime using SET GLOBAL or SET SESSION. You can also select their values using SELECT.
See Section 10.4 [System Variables|, page 519.

The following table shows the full list of all dynamic system variables. The last column
indicates for each variable whether GLOBAL or SESSION (or both) apply.

Chapter 5: Database Administration 275

Variable Name Value Type Type

autocommit boolean SESSION
big_tables boolean SESSION
binlog_cache_size numeric GLOBAL
bulk_insert_buffer_size numeric GLOBAL | SESSION
character_set_client string GLOBAL | SESSION
character_set_connection string GLOBAL | SESSION
character_set_results string GLOBAL | SESSION
character_set_server string GLOBAL | SESSION
collation_connection string GLOBAL | SESSION
collation_server string GLOBAL | SESSION
concurrent_insert boolean GLOBAL
connect_timeout numeric GLOBAL
convert_character_set string GLOBAL | SESSION
default_week_format numeric GLOBAL | SESSION
delay_key_write OFF | ON | ALL GLOBAL
delayed_insert_limit numeric GLOBAL
delayed_insert_timeout numeric GLOBAL
delayed_queue_size numeric GLOBAL
error_count numeric SESSION
expire_logs_days numeric GLOBAL

flush boolean GLOBAL
flush_time numeric GLOBAL
foreign_key_checks boolean SESSION
ft_boolean_syntax numeric GLOBAL
group_concat_max_len numeric GLOBAL | SESSION
identity numeric SESSION
insert_id boolean SESSION
interactive_timeout numeric GLOBAL | SESSION
join_buffer_size numeric GLOBAL | SESSION
key_buffer_size numeric GLOBAL
last_insert_id numeric SESSION
local_infile boolean GLOBAL
log_warnings boolean GLOBAL
long_query_time numeric GLOBAL | SESSION
low_priority_updates boolean GLOBAL | SESSION
max_allowed_packet numeric GLOBAL | SESSION
max_binlog_cache_size numeric GLOBAL
max_binlog_size numeric GLOBAL
max_connect_errors numeric GLOBAL
max_connections numeric GLOBAL
max_delayed_threads numeric GLOBAL
max_error_count numeric GLOBAL | SESSION
max_heap_table_size numeric GLOBAL | SESSION
max_insert_delayed_threads numeric GLOBAL
max_join_size numeric GLOBAL | SESSION

max_relay_log_size numeric GLOBAL

276 MySQL Technical Reference for Version 5.0.0-alpha

max_seeks_for_key numeric GLOBAL | SESSION
max_sort_length numeric GLOBAL | SESSION
max_tmp_tables numeric GLOBAL | SESSION
max_user_connections numeric GLOBAL
max_write_lock_count numeric GLOBAL
myisam_data_pointer_size numeric GLOBAL
myisam_max_extra_sort_file_size numeric GLOBAL | SESSION
myisam_max_sort_file_size numeric GLOBAL | SESSION
myisam_repair_threads numeric GLOBAL | SESSION
myisam_sort_buffer_size numeric GLOBAL | SESSION
net_buffer_length numeric GLOBAL | SESSION
net_read_timeout numeric GLOBAL | SESSION
net_retry_count numeric GLOBAL | SESSION
net_write_timeout numeric GLOBAL | SESSION
optimizer_prune_level numeric GLOBAL | SESSION
optimizer_search_depth numeric GLOBAL | SESSION
preload_buffer_size numeric GLOBAL | SESSION
query_alloc_block_size numeric GLOBAL | SESSION
query_cache_limit numeric GLOBAL
query_cache_size numeric GLOBAL
query_cache_type enumeration GLOBAL | SESSION
query_cache_wlock_invalidate boolean GLOBAL | SESSION
query_prealloc_size numeric GLOBAL | SESSION
range_alloc_block_size numeric GLOBAL | SESSION
read_buffer_size numeric GLOBAL | SESSION
read_only numeric GLOBAL
read_rnd_buffer_size numeric GLOBAL | SESSION
rpl_recovery_rank numeric GLOBAL
safe_show_database boolean GLOBAL
server_id numeric GLOBAL
slave_compressed_protocol boolean GLOBAL
slave_net_timeout numeric GLOBAL
slow_launch_time numeric GLOBAL
sort_buffer_size numeric GLOBAL | SESSION
sql_auto_is_null boolean SESSION
sql_big_selects boolean SESSION
sql_big_tables boolean SESSION
sql_buffer_result boolean SESSION
sql_log_bin boolean SESSION
sql_log_off boolean SESSION
sql_log_update boolean SESSION
sql_low_priority_updates boolean GLOBAL | SESSION
sql_max_join_size numeric GLOBAL | SESSION
sql_mode enumeration GLOBAL | SESSION
sql_quote_show_create boolean SESSION
sql_safe_updates boolean SESSION

sql_select_limit numeric SESSION

Chapter 5: Database Administration

sql_slave_skip_counter
sql_updatable_view_key
sql_warnings

sync_frm

storage_engine
table_cache

table_type
thread_cache_size
time_zone

timestamp

tmp_table_size
transaction_alloc_block_size
transaction_prealloc_size
tx_isolation
unique_checks
wait_timeout
warning_count

numeric

enumeration

boolean
boolean

enumeration

numeric

enumeration

numeric
string
boolean

enumeration

numeric
numeric

enumeration

boolean
numeric
numeric

GLOBAL
GLOBAL |
SESSION
GLOBAL

GLOBAL |
GLOBAL

GLOBAL |
GLOBAL

GLOBAL |
SESSION
GLOBAL |
GLOBAL |
GLOBAL |
GLOBAL |
SESSION
GLOBAL |
SESSION

SESSION

SESSION
SESSION
SESSION
SESSION
SESSION
SESSION
SESSION

SESSION

277

Variables that are marked as “string” take a string value. Variables that are marked as
“numeric” take a numeric value. Variables that are marked as “boolean” can be set to 0, 1,
ON or OFF. Variables that are marked as “enumeration” normally should be set to one of the
available values for the variable, but can also be set to the number that corresponds to the
desired enumeration value. For enumeration-valued system variables, the first enumeration
value corresponds to 0. This differs from ENUM columns, for which the first enumeration

value corresponds to 1.

5.2.4 Server Status Variables

The server maintains many status variables that provide information about its operations.
You can view these variables and their values by using the SHOW STATUS statement:

mysql> SHOW STATUS;

| Variable_name

+ __________________________

| Aborted_clients
| Aborted_connects

| Bytes_received

| Bytes_sent

| Connections

| Created_tmp_disk_tables
| Created_tmp_files

| Created_tmp_tables

| Delayed_errors

| Delayed_insert_threads
| Delayed_writes

| Flush_commands

| Handler_delete

1556372598
1176560426
30023

462604

278 MySQL Technical Reference for Version 5.0.0-alpha

Handler_read_first 106881
Handler_read_key 27820558
Handler_read_next 390681754
Handler_read_prev 6022500
Handler_read_rnd 30546748
Handler_read_rnd_next 246216530
Handler_update 16945404
Handler_write 60356676
Key_blocks_used 14955
Key_read_requests 96854827
Key_reads 162040
Key_write_requests 7589728
Key_writes 3813196
Max_used_connections 0
Not_flushed_delayed_rows | O
Not_flushed_key_blocks 0
Open_files 2
Open_streams 0
Open_tables 1
Opened_tables 44600
Qcache_free_blocks 36
Qcache_free_memory 138488
Qcache_hits 79570

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Qcache_inserts | 27087
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Qcache_lowmem_prunes 3114
Qcache_not_cached 22989
Qcache_queries_in_cache 415
Qcache_total_blocks 912
Questions 2026873
Select_full_join 0
Select_full_range_join 0
Select_range 99646
Select_range_check 0
Select_scan 30802
Slave_open_temp_tables 0
Slave_running OFF
Slow_launch_threads 0
Slow_queries 0
Sort_merge_passes 30
Sort_range 500
Sort_rows 30296250
Sort_scan 4650
Table_locks_immediate 1920382
Table_locks_waited 0
Threads_cached 0
Threads_connected 1
Threads_created 30022

Chapter 5: Database Administration 279

| Threads_running | 1 |
| Uptime | 80380 |
o o +

Many status variables are reset to 0 by the FLUSH STATUS statement.

The status variables have the following meanings. The Com_xxx statement counter variables
were added beginning with MySQL 3.23.47. The Qcache_xxx query cache variables were
added beginning with MySQL 4.0.1. Otherwise, variables with no version indicated have
been present since at least MySQL 3.22.

Aborted_clients
The number of connections that were aborted because the client died without

closing the connection properly. See Section A.2.10 [Communication errors],
page 1072.

Aborted_connects
The number of tries to connect to the MySQL server that failed. See Sec-
tion A.2.10 [Communication errors|, page 1072.

Binlog_cache_disk_use
The number of transactions that used the temporary binary log cache but that
exceeded the value of binlog_cache_size and used a temporary file to store
statements from the transaction. This variable was added in MySQL 4.1.2.

Binlog_cache_use
The number of transactions that used the temporary binary log cache. This
variable was added in MySQL 4.1.2.

Bytes_received
The number of bytes received from all clients. This variable was added in
MySQL 3.23.7.

Bytes_sent
The number of bytes sent to all clients. This variable was added in MySQL
3.23.7.

Com_xxx The number of times each xxx statement has been executed. There is one status
variable for each type of statement. For example, Com_delete and Com_insert
count DELETE and INSERT statements.

Connections
The number of connection attempts (successful or not) to the MySQL server.

Created_tmp_disk_tables
The number of temporary tables on disk created automatically by the server
while executing statements. This variable was added in MySQL 3.23.24.

Created_tmp_files
How many temporary files mysqld has created. This variable was added in
MySQL 3.23.28.

Created_tmp_tables
The number of in-memory temporary tables created automatically by the server
while executing statements. If Created_tmp_disk_tables is big, you may want

280 MySQL Technical Reference for Version 5.0.0-alpha

to increase the tmp_table_size value to cause temporary tables to be memory-
based instead of disk-based.

Delayed_errors
The number of rows written with INSERT DELAYED for which some error occurred
(probably duplicate key).

Delayed_insert_threads
The number of INSERT DELAYED handler threads in use.

Delayed_writes
The number of INSERT DELAYED rows written.

Flush_commands
The number of executed FLUSH statements.

Handler_commit
The number of internal COMMIT statements. This variable was added in MySQL
4.0.2.

Handler_discover
The MySQL server can ask NDB if it knows about a table with a given name.
This is called discovery. Handler_discover indicates the number of time tables
have been discovered. This variable was added in MySQL 4.1.2.

Handler_delete
The number of times a row was deleted from a table.

Handler_read_first
The number of times the first entry was read from an index. If this is high, it
suggests that the server is doing a lot of full index scans; for example, SELECT
coll FROM foo, assuming that coll is indexed.

Handler_read_key
The number of requests to read a row based on a key. If this is high, it is a
good indication that your queries and tables are properly indexed.

Handler_read_next
The number of requests to read the next row in key order. This will be incre-
mented if you are querying an index column with a range constraint or if you
are doing an index scan.

Handler_read_prev
The number of requests to read the previous row in key order. This read method
is mainly used to optimize ORDER BY ... DESC. This variable was added in
MySQL 3.23.6.

Handler_read_rnd
The number of requests to read a row based on a fixed position. This will be
high if you are doing a lot of queries that require sorting of the result. You
probably have a lot of queries that require MySQL to scan whole tables or you
have joins that don’t use keys properly.

Chapter 5: Database Administration 281

Handler_read_rnd_next
The number of requests to read the next row in the data file. This will be high
if you are doing a lot of table scans. Generally this suggests that your tables
are not properly indexed or that your queries are not written to take advantage
of the indexes you have.

Handler_rollback
The number of internal ROLLBACK statements. This variable was added in
MySQL 4.0.2.

Handler_update
The number of requests to update a row in a table.

Handler_write
The number of requests to insert a row in a table.

Key_blocks_unused
This variable was added in MySQL 4.1.2. Section 5.2.3 [Server system vari-
ables], page 251.

Key_blocks_used
The number of used blocks in the key cache. You can use this value to determine
how much of the key cache is in use; see the discussion of key_buffer_size in
Section 5.2.3 [Server system variables|, page 251.

Key_read_requests
The number of requests to read a key block from the cache.

Key_reads
The number of physical reads of a key block from disk. If Key_reads is big,
then your key_buffer_size value is probably too small. The cache miss rate
can be calculated as Key_reads/Key_read_requests.

Key_write_requests
The number of requests to write a key block to the cache.

Key_writes
The number of physical writes of a key block to disk.

Last_query_cost
The total cost of the last compiled query as computed by the query optimizer.
Useful for comparing the cost of different query plans for the same query. The
default value of —1 means that no query has been compiled yet. This variable
was added in MySQL 5.0.1.

Max_used_connections
The maximum number of connections that have been in use simultaneously
since the server started.

Not_flushed_delayed_rows
The number of rows waiting to be written in INSERT DELAY queues.

Not_flushed_key_blocks
The number of key blocks in the key cache that have changed but haven’t yet
been flushed to disk.

282 MySQL Technical Reference for Version 5.0.0-alpha

Open_files
The number of files that are open.

Open_streams
The number of streams that are open (used mainly for logging).

Open_tables
The number of tables that are open.

Opened_tables
The number of tables that have been opened. If Opened_tables is big, your
table_cache value is probably too small.

Qcache_free_blocks
The number of free memory blocks in query cache.

Qcache_free_memory
The amount of free memory for query cache.

Qcache_hits
The number of cache hits.

Qcache_inserts
The number of queries added to the cache.

Qcache_lowmem_prunes
The number of queries that were deleted from the cache because of low memory.

Qcache_not_cached
The number of non-cached queries (not cachable, or due to query_cache_type).

Qcache_queries_in_cache
The number of queries registered in the cache.

Qcache_total_blocks
The total number of blocks in the query cache.

Questions
The number of queries that have been sent to the server.

Rpl_status
The status of failsafe replication (not yet implemented).

Select_full_join
The number of joins that do not use indexes. If this value is not 0, you should
carefully check the indexes of your tables. This variable was added in MySQL
3.23.25.

Select_full_range_join
The number of joins that used a range search on a reference table. This variable
was added in MySQL 3.23.25.

Select_range
The number of joins that used ranges on the first table. (It’s normally not
critical even if this is big.) This variable was added in MySQL 3.23.25.

Chapter 5: Database Administration 283

Select_range_check
The number of joins without keys that check for key usage after each row.
(If this is not 0, you should carefully check the indexes of your tables.) This
variable was added in MySQL 3.23.25.

Select_scan
The number of joins that did a full scan of the first table. This variable was
added in MySQL 3.23.25.

Slave_open_temp_tables
The number of temporary tables currently open by the slave SQL thread. This
variable was added in MySQL 3.23.29.

Slave_running
This is ON if this server is a slave that is connected to a master. This variable
was added in MySQL 3.23.16.

Slow_launch_threads
The number of threads that have taken more than slow_launch_time seconds
to create. This variable was added in MySQL 3.23.15.

Slow_queries
The number of queries that have taken more than long_query_time seconds.
See Section 5.9.5 [Slow query log|, page 366.

Sort_merge_passes
The number of merge passes the sort algorithm has had to do. If this value
is large, you should consider increasing the value of the sort_buffer_size
system variable. This variable was added in MySQL 3.23.28.

Sort_range
The number of sorts that were done with ranges. This variable was added in
MySQL 3.23.25.

Sort_rows
The number of sorted rows. This variable was added in MySQL 3.23.25.

Sort_scan
The number of sorts that were done by scanning the table. This variable was
added in MySQL 3.23.25.

Ssl_xxx Variables used for SSL connections. These variables were added in MySQL
4.0.0.

Table_locks_immediate
The number of times that a table lock was acquired immediately. This variable
was added as of MySQL 3.23.33.

Table_locks_waited
The number of times that a table lock could not be acquired immediately and
a wait was needed. If this is high, and you have performance problems, you
should first optimize your queries, and then either split your table or tables or
use replication. This variable was added as of MySQL 3.23.33.

284

MySQL Technical Reference for Version 5.0.0-alpha

Threads_cached

The number of threads in the thread cache. This variable was added in MySQL
3.23.17.

Threads_connected

The number of currently open connections.

Threads_created

The number of threads created to handle connections. If Threads_created is
big, you may want to increase the thread_cache_size value. The cache hit
rate can be calculated as Threads_created/Connections. This variable was
added in MySQL 3.23.31.

Threads_running

The number of threads that are not sleeping.

Uptime The number of seconds the server has been up.

5.3 The MySQL Server Shutdown Process

The server shutdown process can be summarized like this:

1. The shutdown process is initiated

Al

The server creates a shutdown thread if necessary
The server stops accepting new connections

The server terminates current activity

Storage engines are shut down or closed

The server exits

A more detailed description of the process follows:

1.

The shutdown process is initiated

Server shutdown can be initiated several ways. For example, a user with the SHUTDOWN
privilege can execute a mysqladmin shutdown command. mysqladmin can be used on
any platform supported by MySQL. Other operating sytem-specific shutdown initiation
methods are possible as well: The server shuts down on Unix when it receives a SIGTERM
signal. A server running as a service on Windows shuts down when the services manager
tells it to.
The server creates a shutdown thread if necessary
Depending on how shutdown was initiated, the server might create a thread to handle
the shutdown process. If shutdown was requested by a client, a shutdown thread is
created. If shutdown is the result of receiving a SIGTERM signal, the signal thread might
handle shutdown itself, or it might create a separate thread to do so. If the server tries
to create a shutdown thread and cannot (for example, if memory is exhausted), it issues
a diagnostic message that will appear in the error log:

Error: Can’t create thread to kill server
The server stops accepting new connections

To prevent new activity from being initiated during shutdown, the server stops accept-
ing new client connections. It does this by closing the network connections to which it

Chapter 5: Database Administration 285

normally listens for connections: the TCP/IP port, the Unix socket file, the Windows
named pipe.

4. The server terminates current activity

For each thread that is associated with a client connection, the connection to the client
is broken and the thread is marked as killed. Threads die when they notice that they
are so marked. Threads for idle connections die quickly. Threads that currently are
processing queries check their state periodically and take longer to die. For additional
information about thread termination, see Section 14.5.4.3 [KILL], page 752, in partic-
ular for the instructions about killed REPAIR TABLE or OPTIMIZE TABLE operations on
MyISAM tables.

For threads that have an open transaction, the tranaction is rolled back. Note that
if a thread is updating a non-transactional table, an operation such as a multiple-row
UPDATE or INSERT may leave the table partially updated, because the operation can
terminate before completion.

If the server is a master replication server, threads associated with currently connected
slaves are treated like other client threads. That is, each one is marked as killed and
exits when it next checks its state.

If the server is a slave replication server, the I/O and SQL threads, if active, are
stopped before client threads are marked as killed. The SQL thread is allowed to finish
its current statement (to avoid causing replication problems) then stops. If the SQL
thread was in the middle of a transaction at this point, the transaction is rolled back.

5. Storage engines are shut down or closed
At this stage, the table cache is flushed and all open tables are closed.

Fach storage engine performs any actions necessary for tables that it manages. For
example, MyISAM flushes any pending index writes for a table. InnoDB flushes its
buffer pool to disk, writes the current LSN to the tablespace, and terminates its own
internal threads.

6. The server exits

5.4 General Security Issues

This section describes some general security issues to be aware of and what you can do
to make your MySQL installation more secure against attack or misuse. For information
specifically about the access control system that MySQL uses for setting up user accounts
and checking database access, see Section 5.5 [Privilege system]|, page 292.

5.4.1 General Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to
avoid the most common security mistakes.

In discussing security, we emphasize the necessity of fully protecting the entire server host
(not just the MySQL server) against all types of applicable attacks: eavesdropping, altering,
playback, and denial of service. We do not cover all aspects of availability and fault tolerance
here.

286 MySQL Technical Reference for Version 5.0.0-alpha

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries,
and other operations that users can attempt to perform. There is also some support for
SSL-encrypted connections between MySQL clients and servers. Many of the concepts
discussed here are not specific to MySQL at all; the same general ideas apply to almost all
applications.

When running MySQL, follow these guidelines whenever possible:

e Do not ever give anyone (except MySQL root accounts) access to the user table in
the mysql database! This is critical. The encrypted password is the real password
in MySQL. Anyone who knows the password that is listed in the user table and has
access to the host listed for the account can easily log in as that user.

e Learn the MySQL access privilege system. The GRANT and REVOKE statements are used
for controlling access to MySQL. Do not grant any more privileges than necessary.
Never grant privileges to all hosts.

Checklist:

— Try mysql -u root. If you are able to connect successfully to the server with-
out being asked for a password, you have problems. Anyone can connect to your
MySQL server as the MySQL root user with full privileges! Review the MySQL
installation instructions, paying particular attention to the information about set-
ting a root password. See Section 2.4.3 [Default privileges|, page 129.

— Use the SHOW GRANTS statement and check to see who has access to what. Then
use the REVOKE statement to remove those privileges that are not necessary.

e Do not store any plain-text passwords in your database. If your computer becomes
compromised, the intruder can take the full list of passwords and use them. Instead,
use MD5 (), SHA1 (), or some other one-way hashing function.

e Do not choose passwords from dictionaries. There are special programs to break them.
Even passwords like “xfish98” are very bad. Much better is “duag98” which contains
the same word “fish” but typed one key to the left on a standard QWERTY keyboard.
Another method is to use “Mhall” which is taken from the first characters of each word
in the sentence “Mary had a little lamb.” This is easy to remember and type, but
difficult to guess for someone who does not know it.

e Invest in a firewall. This protects you from at least 50% of all types of exploits in any
software. Put MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

— Try to scan your ports from the Internet using a tool such as nmap. MySQL uses
port 3306 by default. This port should not be accessible from untrusted hosts.
Another simple way to check whether or not your MySQL port is open is to try
the following command from some remote machine, where server_host is the host
on which your MySQL server runs:

shell> telnet server_host 3306

If you get a connection and some garbage characters, the port is open, and should
be closed on your firewall or router, unless you really have a good reason to keep
it open. If telnet just hangs or the connection is refused, everything is OK; the
port is blocked.

Chapter 5: Database Administration 287

e Do not trust any data entered by users of your applications. They can try to trick
your code by entering special or escaped character sequences in Web forms, URLs, or
whatever application you have built. Be sure that your application remains secure if
a user enters something like “; DROP DATABASE mysql;”. This is an extreme example,
but large security leaks and data loss might occur as a result of hackers using similar
techniques, if you do not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric
data as well. If an application generates a query such as SELECT * FROM table WHERE
ID=234 when a user enters the value 234, the user can enter the value 234 OR 1=1
to cause the application to generate the query SELECT * FROM table WHERE ID=234 OR
1=1. As a result, the server retrieves every record in the table. This exposes every
record and causes excessive server load. The simplest way to protect from this type
of attack is to use apostrophes around the numeric constants: SELECT * FROM table
WHERE ID=’234". If the user enters extra information, it all becomes part of the string.
In numeric context, MySQL automatically converts this string to a number and strips
any trailing non-numeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need
not be protected. This is incorrect. Even if it is allowable to displ